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Human symptoms–disease network
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In the post-genomic era, the elucidation of the relationship between the molecular origins of

diseases and their resulting phenotypes is a crucial task for medical research. Here, we use a

large-scale biomedical literature database to construct a symptom-based human disease

network and investigate the connection between clinical manifestations of diseases and their

underlying molecular interactions. We find that the symptom-based similarity of two diseases

correlates strongly with the number of shared genetic associations and the extent to which

their associated proteins interact. Moreover, the diversity of the clinical manifestations of a

disease can be related to the connectivity patterns of the underlying protein interaction

network. The comprehensive, high-quality map of disease–symptom relations can further be

used as a resource helping to address important questions in the field of systems medicine,

for example, the identification of unexpected associations between diseases, disease etiology

research or drug design.
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T
he past decades have brought remarkable advances in our
understanding of human disease1. While progress on the
genetic and proteomic aspects has been impressive2, most

aspects of the relation between genotype and phenotype still
remain unclear, especially for complex diseases1. Heterogeneity,
polygenicity and pleiotropism are major factors that are hampering
the progress3,4, as well as diffuse boundaries between diseases5, as
they can have multiple causes and be related through several
dimensions6–13. A number of resources have been constructed
aiming to understand the entangled relationship between diseases,
often in the form of networks6. For example, Rzhetsky et al.12

inferred the comorbidity links between 161 disorders from the
disease history of 1.5 million patients and proposed models to
estimate the genetic overlap between diseases. Hidalgo et al.9

constructed a disease phenotypic network using comorbidity
patterns from more than 30 million Medicare patients, capturing
disease progression patterns, such as that patients tend to develop
diseases in the network vicinity of diseases that they already have
and that patients with highly interconnected diseases show higher
mortality. In model organisms, for example, physical protein
interactions point to genes that are related to similar phenotypes
when knocked out14–17. Furthermore, a number of studies
indicated that similarity between phenotypes reflects biological
modules of interacting functionally related genes. Likewise,
phenotypic similarities between monogenic syndromes in human
have been shown to reflect shared biological mechanisms and can
be exploited to predict gene function18–20. Interestingly, the
inclusion of disease phenotype similarities can substantially
improve the performance of candidate gene prediction
methods21–24. Resources like the Human Phenotype Ontology25

(HPO) and the Mammalian Phenotype Ontology26 provide a
standardized vocabulary of phenotypic information that can also be
used to transfer detailed knowledge of model organisms to
interpret and predict associated phenomena in human27,28.

An important available resource that has been overlooked so
far is the highest level clinical phenotypes, that is, symptoms and
signs (called symptoms in brief in the following). Symptoms are
crucial in clinical diagnosis and treatment. For example, the
major symptoms of a heart attack are pain or discomfort in the
chest, arms or shoulder, jaw, neck, or back, feeling weak, light-
headed or faint and shortness of breath29. The wide range of
symptoms illustrates the interdependence of the homeostatic
mechanisms, whose perturbations lead to the manifestation of a
disease. Community health professionals and general
practitioners derive most of their knowledge of the symptoms
of individual diseases from hospital-based observation30. Indeed,
symptoms are the most directly observable characteristics of a
disease and the very basis of clinical disease classification. The
elucidation of the connection between shared symptoms and
shared genes or protein–protein interactions of two diseases could
therefore help bridge the gap between bench-based biological
discovery and bedside clinical solutions.

In this paper, we use large-scale medical bibliographic records
and the related Medical Subject Headings (MeSH) metadata31 from
PubMed32, to generate a symptom-based network of human
diseases (Human Symptoms Disease Network, HSDN), where the
link weight between two diseases quantifies the similarity of their
respective symptoms. By integrating disease–gene association and
protein–protein interaction (PPI) data, we investigate the
correlations between the symptom similarity of diseases and their
degree of shared genes or PPIs (Fig. 1 and Supplementary Fig. 1).

Results
Construction of the HSDN. We extracted 7,109,429 (about 35.5%
in over twenty million records) PubMed bibliographic records with
one or more disease/symptom terms in the MeSH metadata field

(see Methods), yielding a total of 4,442 disease terms and 322
symptom terms (Supplementary Data 1 and 2). After filtering for
the co-occurrence of at least one disease and one symptom term,
849,103 (4.2%) PubMed records were left. From these records, we
extracted the symptom–disease relationships, resulting in 147,978
connections between 322 symptoms and 4,219 diseases (Fig. 2,
Supplementary Data 3), which represent 98.5% of all symptoms
and 95.0% of all diseases contained in the MeSH vocabulary. To
quantify the relation between a symptom and a disease, we then
used the term frequency-inverse document frequency (see
Methods). After measuring the symptom similarities for all disease
pairs, we obtained the HSDN with 7,488,851 links with positive
similarity between 4,219 diseases. The HSDN covers all MeSH
disease categories, from broad categories like cancer to specific
conditions like cerebral cavernous hemangioma. The twenty most
frequent diseases and symptoms are depicted in Fig. 2a,b. The two
most frequent diseases in the PubMed database are breast cancer
and hypertension. Note that this reflects the cumulative focus of
research in the biomedical field rather than the epidemical pre-
valence of diseases. The HSDN constitutes a single giant compo-
nent, that is, all diseases directly or indirectly connect to all others.
The network is very dense, with 94% of the nodes being connected
to more than 50% of all other nodes (Fig. 2d). The most highly
connected disease is Hyponatremia (4,214 disease neighbours), an
electrolyte disorder associated with a number of common symp-
toms that occur in many diseases, such as headache, nausea and
fatigue. The disease with the fewest connections is Odontoma
(eight disease neighbours), a tumour originating from teeth.

Performance evaluation of the HSDN. In order to validate our
approach, we did an extensive manual quality check of the core
data. We randomly selected 1,000 PubMed records and manually
evaluated the extracted symptom–disease relations with the aid of
medical experts (see Supplementary Methods, Supplementary
Data 5). We find that (i) the vast majority of the relations are
medically meaningful and direct. The only notable (5.5% of the
random records) confounding factors were symptoms related to
drug treatment instead of the immediate disease. (ii) The disease
relations in the HSDN are very specific, 57% of the random records
contain only a single disease, 28.5% contain two and only 14.5%
more than two. (iii) The automated process yields very few false
positives: only 0.8% of the cases contained a negation as in ‘disease
X is NOT related to symptom Y’ that our text mining approach
could not capture.

To further test the reliability of the obtained disease similarity
score, we create a benchmark disease network using the manually
curated HPO25 data (Supplementary Methods), in which two
diseases are connected if they share at least one symptom. The
benchmark network includes 940 MeSH diseases (corresponding
to 2,111 OMIM disease identifiers) and 121,945 links. It is much
smaller than the HSDN, but arguably of high quality. Comparing
the HSDN with the HPO network, we find that higher symptom
similarity in the HSDN is related to higher edge overlap with the
HPO network (Fig. 3a). The Pearson correlation coefficient
(PCC) between the ratio of shared disease links and disease
similarity is very high (PCC¼ 0.96, P¼ 1.4� 10� 5), indicating
that the proposed disease similarity is a reliable measure for
shared symptoms. For comparison with random expectation, we
reshuffled (10 random permutations) the symptom features of
each disease using the Fisher–Yates method33, finding
significantly less overlap and fewer high similarity values
(Fig. 3b). In randomized networks, most disease similarities are
low (o0.1), and their distribution is significantly different from
the one in the real HSDN, where the count of disease links
declines much more slowly with increasing disease similarity.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5212

2 NATURE COMMUNICATIONS | 5:4212 | DOI: 10.1038/ncomms5212 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


To further examine the completeness of the HSDN, we calculate
the number of the common nodes and links with the HPO disease
network (Fig. 3c). The results show that the benchmark network
from HPO is almost a complete subset of the HSDN, which
captures 898 of its nodes (95.5%) and 107,098 of its links (87.8%

of the whole HPO network, 95.7% of the subnetwork of the 898
common nodes). The number of overlapping links is significantly
higher (P¼ 2.2� 10� 16, binomial test, see Supplementary
Methods) than random expectation, again indicating that the
HSDN offers reliable relationships.
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Figure 1 | Construction of the HSDN. (a) Extracting the disease–symptom relationships from PubMed bibliographic literature database. The association

between symptoms and diseases are based on their co-occurrence in the MeSH metadata fields of PubMed. (b) A disease network is constructed, in

which nodes represent diseases and links represent symptom similarities between diseases. (c) Integrating both disease–gene associations and PPI
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shared genes/PPIs. We observe highly clustered regions of diseases that belong to the same broad disease category.
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Shared symptoms indicate shared genes between diseases.
We integrated three genotype–phenotype databases, yielding
28,336 disease–gene associations (Supplementary Methods,
Supplementary Data 6) and constructed a Human Disease Net-
work as described in Goh et al.13, in which two diseases are
connected if they share an associated gene. The resulting network
consists of 1,741 diseases and 47,410 links. Comparing the link
overlap between the HSDN and Human Disease Network, we
find a total of 41,880 overlapping links (20,182 overlapping
disease links with similarity score Z0.2, a 1.8-fold increase
compared with random expectation, P¼ 2.2� 10� 16, binomial
test; Fig. 4b). The overlapping link ratio (fraction of disease pairs
with both shared symptoms and shared genes of all disease pairs
with shared symptoms) shows strong positive correlation with
disease similarity (PCC¼ 0.92 and P¼ 1.8� 10� 4; Fig. 4a), that
is, diseases with more similar symptoms are more likely to have
common gene associations. Disease pairs with well-established
similar clinical manifestations and known common genes
include, for example, hypoalphalipoproteinemia and metabolic
syndrome (similarity score 0.97), insulin resistance and metabolic
syndrome (0.99), insulin resistance and diabetes mellitus (0.97),
fatty liver and diabetes mellitus (0.93) and duodenal ulcer and
stomach ulcer (0.93). High similarity scores can also suggest yet
unknown common genetic associations. For example, a recent
study34 established similar patterns of genomic alteration in the
two cancer types colonic neoplasm and rectal neoplasm. In the
HSDN, they also have very similar clinical manifestations
(similarity score 0.64), even higher values are obtained between
the related terms rectal neoplasms and colorectal neoplasms
(0.92) or colonic neoplasms and colorectal neoplasms (0.73).

Shared symptoms indicate shared protein interactions. To
further assess whether shared symptoms indicate not only shared
genetic associations, but also close interaction of the corre-
sponding proteins, we integrated five publicly available PPI
databases (Supplementary Methods) and constructed disease
networks in which two diseases are linked if they have shared 1st
and 2nd order PPI interactions, respectively: shared 1st order PPI
means that two diseases have associated proteins that directly
interact within the PPI network, while shared 2nd order PPI
means that they are connected by a path of length two (Fig. 1c,d).
In both cases, we find strong positive correlations between
symptom similarity and shared PPIs. The ratio of diseases with
shared PPIs increases significantly with higher symptom simi-
larity (PCC¼ 0.89, P¼ 5.4� 10� 4 for 1st order interactions,
Fig. 5a; PCC¼ 0.84, P¼ 0.002 for 2nd order interactions, Fig. 5b).
It is well established that proteins associated to the same human
disease/disease category or phenotype tend to interact with each
other13,20,35. In contrast to previous phenotype maps19, the
HSDN strictly considers only symptom features (excluding in
particular disease terms themselves, anatomical features,
congenital abnormalities, and so on) and is not focused on
monogenic diseases, but includes all disease categories. Our
results therefore provide robust evidence that interacting proteins
between diseases are also connected to similar high-level
manifestations.

This broader scope enables us to extend previous approaches
to uncover novel disease associations. For example, it is
considered that both genetic and environmental factors play a
role in the pathogenesis of Parkinson’s disease (PD)36, which is
characterized by resting tremor, akinesia and rigidity. In the
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HSDN, we found that PD has highly similar symptoms
with substance-related diseases like mercury poisoning (0.60),
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a toxin)
poisoning (0.58) and manganese poisoning (0.52). MPTP is
an established disease model for PD37, and manganese
poisoning has also been proposed recently38. Similarly, it has
been suggested that the molecular response to mercury exposure
may increase dopamine neuron vulnerability and the propensity
to develop PD39.

The results above indicate that high symptom similarity
strongly correlates with shared genes, as well as with 1st- and
2nd-order protein interactions. This suggests that there is a
general relationship between phenotypic similarity on one hand,
and path lengths on the PPI network on the other hand. To test
this hypothesis, we calculate the minimum shortest path length
(MSPL) of proteins within the PPI network for each disease pair

(see Methods). Indeed, we find strong negative correlation
between the MSPL and symptom similarities (PCC¼ � 0.93
and P¼ 7.7� 10� 5; Fig. 6a,b), that is, the higher the symptom
similarity, the shorter the PPI network distance between diseases.
The MSPL decreases from 2.88 to 1.98 when disease similarity
bins increase from 0.1 to 1.0. This indicates that the network
parsimony principle6 according to which causal molecular
pathways tend to coincide with shortest network paths can be
used to quantify the correlation between manifestations of
diseases and their related protein interactions.

Diversity of disease manifestations and molecular mechanisms.
In genetic nosology, it has been recognized that due to pleio-
tropism and genetic heterogeneity there is a large discrepancy
between the diversity of their clinical manifestations and the
underlying cellular mechanisms4. For example, sickle cell disease
has rather diverse clinical manifestations, such as mild anaemia,
painful crises, bony infarcts and acute chest syndrome, despite
being a classical monogenic disease. Familial hypertrophic
cardiomyopathy on the other hand, is caused by mutations of a
number of different genes, yet its pathophysiology largely
manifests itself in a specific portion of the heart muscle (which
in turn may lead to several clinical phenotypes). To fully unravel
these complex relations, comprehensive and complete maps are
needed that combine genome or proteome components with
intermediate phenotype components, environmental factors and
pathophenotypes5.
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In a first attempt to analyse the relation between molecular and
phenotypic diversity of diseases, we construct an integrated
disease network that combines phenotypic relations based on
symptom similarity, with shared molecular mechanisms based on
protein interactions: First, we filter the HSDN for significant links
with similarity scores 40.1 (1,121,899 links remain). Second, we
identify all disease links that are supported by either shared genes,
or 1st/2nd order protein interactions. The resulting shared
symptoms and shared genes/PPIs network (SGPDN) contains
133,106 interactions between 1,596 distinct diseases
(Supplementary Data 4). We used two quantities to measure
disease diversity in this network: betweenness and node diversity
(see Methods). In the HSDN, we assume that a disease has a high
capability to accommodate different manifestations when it has a
high network betweenness, that is, a high number of shortest
paths pass through it. We calculated the disease diversity in the
SGPDN and the corresponding maximum diversities of disease-
related genes in the PPI network, finding strong positive
correlations between the two (node diversity correlation:
PCC¼ 0.84, P¼ 2.5� 10� 10, Fig. 7a; betweenness correlation:
PCC¼ 0.59, P¼ 9.5� 10� 7, Fig. 7b). These results demonstrate
that a disease with diverse clinical manifestations will typically
also have more diverse underlying cellular network mechanisms.

Disease groups. The HSDN approach can further be used to
study interrelationships between groups or classes of diseases. In
order to obtain a more global view, we extracted the backbone of
the SGPDN disease network using the multi-scale backbone
algorithm40 (Supplementary Methods). The resulting subnetwork
includes 2,159 disease links with significant associations of shared
symptoms, shared genes and (1st or 2nd order) PPIs (Fig. 1e and
Supplementary Fig. 2). We find that diseases within the same

category form clear, highly interconnected communities, such as
metabolic diseases, respiratory tract diseases, digestive system
diseases, cardiovascular diseases, neoplasms and mental
disorders. Exceptions include bacterial infectious diseases, virus
diseases and parasite diseases, which appear to be spread among
other disease categories. Besides the links within the same
category, there are also many links connecting diseases of
different categories, for example, between neoplasms and other
disease categories. In particular, we find that the three main
disease risks, namely infectious diseases, chronic inflammation
diseases and neoplasms, are highly interconnected. A detailed
analysis of these connections may yield novel insights into the
more and more widely recognized pathological and aetiological
associations between inflammatory diseases and neoplasms41 and
the human genetic susceptibility to infectious diseases42.

Discussion
Despite the known limitations in completeness and quality of
currently available data on clinical manifestations and cellular
mechanisms of disease, our results indicate strong associations
between symptom similarity of diseases and shared genes and
PPIs, as well as a clear correspondence between the diversity of
the clinical manifestations of diseases and the underlying diversity
in their cellular mechanisms. This demonstrates that individual-
level disease phenotypes (for example, symptoms) and molecular-
level disease components (for example, genes and PPIs) show
robust correlations, even though their direct associations are
influenced by complicated intermediate factors43. This finding
opens up promising venues to use the presented symptom-based
network as a rich resource to quantitatively address diverse
questions in the field of systems medicine.

The observed correlations between clinical manifestations and
molecular mechanisms of diseases can be highly valuable for
functional annotations of genomics11 and reveal regularities
between different disease categories. Inflammatory bowel diseases

34
36
38
40
42
44
46
48
50
52
54
56

0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n 
of

 d
is

ea
se

 li
nk

s 
w

ith
sh

ar
ed

 2
nd

 o
rd

er
 P

P
Is

Disease similarity bins

Random
Observed

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n 
of

 d
is

ea
se

 li
nk

s 
w

ith
sh

ar
ed

 1
st

 o
rd

er
 P

P
Is

Disease similarity bins

Random
Observed

Figure 5 | Correlation between symptom similarity and shared PPIs.

Percentage of overlapping disease links between the network of shared

symptoms and the network of shared 1st order PPIs (a) and shared 2nd

order PPIs (b). Random expectations are derived from 10 random

permutations, error bars denote s.d.

10–6

10–5

10–4

10–3

10–2

10–1

100

0 5 10 15 20 25 30

F
ra

ct
io

n 
of

 a
ll 

pa
irs

Minimum shortest path length

0.1
0.5
1.0

2

1.75

2.25

2.5

2.75

3

0 0.2 0.4 0.6 0.8 1

M
in

im
um

 s
ho

rt
es

t p
at

hs
be

tw
ee

n 
di

se
as

e 
m

od
ul

es

Disease similarity bins

Disease similarity:

Figure 6 | Correlation between symptom similarity and shortest path

length of the associated proteins in the PPI network. (a) MSPL between

disease modules. (b) MSPL distributions for different disease similarities.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5212

6 NATURE COMMUNICATIONS | 5:4212 | DOI: 10.1038/ncomms5212 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


(IBD), for example, are a group of diseases of increasing global
prominence, generally described by chronic relapsing
inflammatory conditions of the gastrointestinal tract. There are
two major types, ulcerative colitis (UC) and Crohn’s disease
(CD)44. Despite their very different pathological characteristics,
they may present with common symptoms like abdominal pain,
vomiting, diarrhoea, rectal bleeding and weight loss. In total, UC
and CD share 78 symptoms in the HSDN (similarity score
B0.89). In agreement with the clinical recognition of UC and
CD, eight out of their respective 10 symptoms with the highest
bibliographic co-occurrence are in common (Table 1). Also at the
molecular level many shared genetic risk loci/genes have been
identified, for example, IL23R, JAK2, IL12B, STAT3, PTPN2,

TNFSF15 and CARD945. A recent research found 71 new
genome-wide significant associations for a total of 163 IBD loci,
most of which contribute to both UC and CD phenotypes46. We
have further investigated the correlation between IBD and all the
27 disease categories in MeSH (Supplementary Methods and
Supplementary Table 1). In addition to the expected relation to
other digestive system diseases, we found positive correlations
with bacterial infections, virus diseases, parasitic diseases and
immune system diseases (Supplementary Fig.7, Supplementary
Tables 2 and 3). This finding is also coherent with genome-wide
association study results46, showing that genetic loci identified for
IBD have a strong overlap with genes tied to the immune
response to mycobacterial infections and to other immune-
related disorders such as ankylosing spondylitis and psoriasis.

A second promising example for the use of our broad data
across disease categories is a comparison between genetic and
infectious diseases. By analysing integrated data (virus targets,
related PPIs and disease–gene associations) of the Epstein–Barr
virus (EBV) and the human papillomavirus, a recent study47

showed that these viruses perturb the host network in a highly
localized fashion, indicating that primarily the proteins directly
connected to viral targets play a mechanistic role in the
implicated diseases. We examined the HSDN network for
diseases with similar symptoms as EBV infections. The 20 most
strongly associated diseases include several EBV-implicated
diseases, such as infectious mononucleosis (similarity score
0.63), T-cell lymphoma (0.59), Hodgkin disease (0.59), diffuse
large B-cell lymphoma (0.58) and non-Hodgkin lymphoma
(0.58). These examples show that diseases associated with genes
located in the close neighbourhood of EBV targets in the PPI
network also exhibit high symptom similarity with EBV
infections. Symptom similarity scores could therefore provide a
promising venue for gene prioritization and target identification
of viral/bacterial infections.

Another important area in which symptoms play a crucial role
is drug-related research. Most drugs approved by the US Food
and Drug Administration are merely palliative48, that is, they only
treat symptoms rather than targeting disease-specific genes or
pathways. A detailed understanding of how symptoms relate to
underlying molecular processes is therefore central for our efforts
towards more effective and individualized treatments. First
attempts in this direction have been proposed recently in drug
design, using for example phenotype screening or the similarities
of side-effects49, which are also most often observed and reported
as clinical symptoms50. Our comprehensive symptom-based
disease relationships may provide valuable input for such
approaches. For example, the similar treatment of the two
diseases with high symptom similarity discussed above, UC and
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Table 1 | The ten symptoms with the highest co-occurrence with Crohn’s disease and ulcerative colitis.

Ulcerative colitis Crohn’s disease

Symptom Occurrence Symptom Occurrence

Diarrhea 214 Diarrhea 228
Psychophysiologic disorders 123 Body weight 141
Body weight 62 Abdominal pain 101
Abdominal pain 34 Pain 63
Pain 31 Psychophysiologic disorders 62
Fever 20 Fever 44
Constipation 18 Weight loss 43
Nausea 17 Oedema 39
Headache 17 Abdomen, acute 26
Weight loss 15 Nausea 24

Symptoms associated with both diseases are shown in red.
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CD, is well established in clinical practice. In both cases, steroids
are used to relieve symptoms, as well as common drugs, for
example, azathioprine, infliximab and olsalazine. We speculate
that the HSDN could help in systematically generating
hypotheses for such disease pairs. Alzheimer’s disease (AD), for
example, is still lacking an effective therapy to reverse the
progressive loss of memory and other cognitive functions. In the
HSDN, AD shows high symptom similarity with epilepsy and
several of its variants, like temporal lobe epilepsy (0.63). The two
diseases also exhibit significant comorbidity51. An antiepileptic
drug (levetiracetam) was recently found to reverse deficits in
learning and memory in AD mice and might also help ameliorate
related abnormalities in human52.

Symptoms represent the high-level manifestations of a disease
that are actually observed by patients and physicians. Ultimately,
it is due to certain symptoms that an individual will seek
professional help, and they are crucial for accurate clinical
diagnosis and designing the appropriate treatment. However, the
objective validation of the patients’ experience of major classes of
symptoms still remains a pressing challenge in clinical practice.
Currently, the MeSH metadata do not include more accurate,
quantitative descriptions of symptom features (for example,
severity, frequency or prevalence rate). Promising routes to
further increase the accuracy of symptom-based disease relations
would therefore be the integration of medical terminologies and
clinical data. Clinical terminology systems like SNOMED-CT53

hold millions of relationships between medical entities (for
example, diseases, body locations and clinical findings), yet
currently they only contain relatively few symptom–disease
associations as considered in this study (Supplementary
Methods). A second source containing vast amounts of relevant
information are electronic health records and their related
personal laboratory results. These data probably constitute the
richest and most promising resource towards a quantitative,
personalized description of symptom–disease relationships.
To this date, however, clinical documentation is still highly
variable and rife with errors and imprecision54,55. Symptoms are
typically described in narrative notes, therefore requiring complex
full-text analysis. In addition, a large-scale data integration
aiming at comprehensive disease and population coverage
will also meet difficulties pertaining to privacy issues and
semantic interoperability across institutions or countries56.
Notwithstanding these challenges, we are convinced that
advances in the field of automated text mining57 will eventually
enable us to substantially expand the data presented in this
manuscript.

Methods
Basic datasets. The construction of a symptom-based disease network requires
(i) a basic taxonomy for diseases and symptoms and (ii) a corpus of data from
which to extract their relations. After evaluating several possible options (see
Supplementary Methods, Supplementary Data 6 and 7 for a comparison with
SNOMED-CT, ICD9/10 and HPO), we chose the combination of the MeSH
vocabulary and the PubMed literature database. The MeSH classification is defined
by experts and offers a comprehensive vocabulary across all disease categories (in
contrast to, for example, OMIM which focuses on monogenic diseases), system-
atically organized in a hierarchical tree (in contrast to, for example, ICD9/10 which
has only two levels). The most important advantage for our purposes is that MeSH
is used directly to index all articles in the massive PubMed database. The indexing
is done manually by trained experts and according to standardized procedures,
thereby ensuring highly accurate assignments58. In addition, this process alleviates
a core challenge in medical text mining, the ambiguity and multiple conventions in
nomenclature, since the MeSH nomenclature includes synonymous aliases for any
given term.

The basic data used in our study also bears certain limitations. The MeSH
vocabulary is relatively old and rigid with only annual updates. This may limit the
extent to which the identified associations capture latest research results of the
rapidly evolving field of medicine. On the other hand, stable and well-established
terms may also lead to more robust associations for our purposes. Other important
shortcomings are that MeSH has relatively few disease terms (compared with, for

example, ICD9/10) and that our associations are not derived directly from clinical
diagnosis, but from research articles. In the future, it would be highly desirable to
develop techniques that enable us to automatically extract information from
clinical records. Currently available methods for this very challenging problem of
automated full-text analysis in large-scale data do not yield results with comparable
accuracy55. A challenge inherent to all disease taxonomies is that the distinction
between symptoms and diseases is not always clear, for example obesity. According
to the expert-based MeSH classification, obesity belongs to four different broad
categories, namely ‘Nutritional and Metabolic Diseases’, ‘Diagnosis’, ‘Physiological
Phenomena’ and ‘Pathological Conditions, Signs and Symptoms’. Considering its
MeSH definition as ‘a status with body weight that is grossly above the acceptable
or desirable weight, usually due to accumulation of excess fats in the body [...]’ it is
apparent that a precise and unique classification into a single category is difficult
and obesity may indeed be regarded as a disease, a symptom, a diagnosis and
physiological phenomenon at the same time. Since the multihierarchical structure
of MeSH explicitly allows for multiple categories for a single term, the data we
generated can be used to explore both interpretations, for example, the
relationships of obesity as a symptom or as a disease.

Acquisition of symptom and disease relationships. Each article listed in
PubMed is associated to metadata that include a list of manually assigned keywords
describing the major topics of the article. We developed a Java programme
(Supplementary Fig. 4) utilizing the NCBI E-utility web services to acquire all
PubMed identifiers whose keywords include any of the disease or symptom terms
defined by MeSH (2011 ASCII version, see Supplementary Methods). Note that we
do not use a full-text search of the articles or their abstracts, but only the manually
curated metadata. The association between symptoms and diseases were then
quantified using term co-occurrence (number of PubMed identifiers in which two
terms appear together; see Supplementary Methods and Supplementary Fig. 5).
Similar methods have been widely used as a reliable approach to identify asso-
ciations between different medical entities59. Note that this pairwise term co-
occurrence does not take possible interactions between symptoms into account, but
considers different symptoms of a given disease to be independent of each other.
Prevalent combinations of symptoms can be extracted from the weighted symptom
vectors described below. However, these combinations only account for positive
interactions between symptoms. Cases, in which certain symptoms of the same
disease are mutually exclusive, cannot be detected with this simple method.

Symptom-based diseases similarity. In the field of information retrieval, text
documents or concepts are commonly represented by feature vectors60. Here, we
describe every disease j by a vector of symptoms dj

dj ¼ w1;j; w2;j; :::;wn;j
� �

; ð1Þ

where wi,j quantifies the strength of the association between symptom i and disease
j. The prevalence of the different symptoms and diseases is very different, for
example, there are highly abundant symptoms like pain, and publication biases
towards certain diseases like breast cancer. To account for this heterogeneity, we
therefore do not use the absolute co-occurrence Wi,j to measure the strength of an
association between symptom i and disease j, but the term frequency-inverse
document frequency60 wi,j:

wi;j ¼Wi;jlog
N
ni

ð2Þ

where N denotes the number of all diseases in the dataset and ni the number of
diseases where symptom i appears. Since all symptoms in our data have at least one
associated disease, the potential problem of dividing by zero does not arise.

A widely used measure in both text mining and the biomedical literature to
quantify the similarity between two concepts is the cosine similarity of the
respective vectors. The similarity between the vectors dx and dy of two diseases x
and y is calculated as follows:

cos dx ; dy
� �

¼
P

i dx;i dy;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i d2

x;i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i d2

y;i

q ð3Þ

The cosine similarity ranges from 0 (no shared symptoms) to 1 (identical
symptoms).

Filtering significant symptom–disease associations. The full HSDN is very
dense with over 84% of all possible pairwise disease links being present. In addition
to the absolute value of a pairwise symptom similarity, we therefore also deter-
mined its statistical significance, for instance for a more accurate inference of
phenotype–genotype associations. A widely used statistic to filter significant
associations between medical entities from co-occurrence literature data is the w2-
test that compares observed frequencies with the frequencies expected for inde-
pendence. A priori we do not know how many true associations to expect, even
though it is reasonable to assume that many co-occurrences are indeed meaningful,
given the manual curation process of the MeSH metadata. In order to
rationalize the choice of a significance threshold, we use a method specifically
developed for a similar application61 that combines w2-tests with P-value plots62
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(see Supplementary Methods and Supplementary Fig. 3 for more details).
Comparable to previously reported values, we find a threshold of P-value¼ 0.13,
indicating that there are indeed relatively many false null hypothesis, that is, true
associations. For our subsequent analysis, we have nevertheless chosen to proceed
with the more conservative and commonly used threshold of P-value¼ 0.05. We
provide the full dataset in order to enable the research community to adapt these
choices to their particular needs, for example to employ stricter criteria for a more
targeted investigation on few diseases of interest. In our case, we obtain 62,820
filtered significant connections between 3,973 diseases and 322 symptoms. The
average number of diseases per symptom is about 196, some general symptoms like
abnormal body weight and pain have more than 1,000 associated diseases

Shortest paths and single linkage between disease modules. Shortest paths are
an important topological quantity for the analysis of social and biological net-
works63, the most prominent example of its use is probably the well-known small-
world property of many complex networks64. We use Dijkstra’s algorithm65 to find
all shortest paths in the PPI network. In order to quantify the PPI distance between
disease pairs, we use the single linkage distance DSL, that is, the minimum of all
shortest paths between related proteins: For two diseases x and y with the
corresponding related protein sets Px and Py, the single linkage distance is given by

DSLðx; yÞ ¼ min
pi2Px ;pj2Py

D pi; pj
� �

ð4Þ

where D(pi, pj) is the shortest path length between the two proteins pi and pj.

Disease diversity. In order to characterize the connectedness of a node within a
network, we use betweenness66 and node diversity67. Betweenness is a centrality
measure quantifying how many shortest paths run through a given node and can
be used, for example, to quantify the influence of individuals in social networks68.
The diversity f of node j is based on the node bridging coefficient69 and defined by

fðjÞ ¼
X

i2NðiÞ

dðiÞ
kðiÞ� 1

ð5Þ

where k(i) is the degree of node i, N(i) denotes its neighbourhood, that is, the set of
all its direct neighbours and d(i) is the total number of links leaving that
neighbourhood. The diversity f is large for nodes with many neighbours that have
many out-going links themselves.

For the disease diversity within the HSDN, both betweenness and node diversity
can be measured directly for each disease. For the diversity of disease-related genes
within the PPI, we use the maximum of all respective betweenness or node
diversity values to represent the diversity of the disease in the PPI context.
Furthermore, we normalized the diversity values of each disease by using the z-
score before calculating the correlation between its two related diversity values.
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