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The increasing cost of drug development together with a significant drop in the number of

new drug approvals raises the need for innovative approaches for target identification

and efficacy prediction. Here, we take advantage of our increasing understanding of the

network-based origins of diseases to introduce a drug-disease proximity measure that

quantifies the interplay between drugs targets and diseases. By correcting for the known

biases of the interactome, proximity helps us uncover the therapeutic effect of drugs, as well

as to distinguish palliative from effective treatments. Our analysis of 238 drugs used in 78

diseases indicates that the therapeutic effect of drugs is localized in a small network

neighborhood of the disease genes and highlights efficacy issues for drugs used in Parkinson

and several inflammatory disorders. Finally, network-based proximity allows us to predict

novel drug-disease associations that offer unprecedented opportunities for drug repurposing

and the detection of adverse effects.
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T
he emergence of most diseases cannot be explained by
single-gene defects, but involve the breakdown of the
coordinated function of distinct gene groups1.

Consequently, to be successful, drug development must shift its
focus from individual genes that carry disease-associated
mutations towards a network-based perspective of disease
mechanisms. We continue to lack, however, a network-based
formalism to explore the impact of drugs on proteins known to be
perturbed in a disease.

Network-based approaches have already offered important
insights into the relationship between drugs and diseases. For
example, the analysis of targets of US Food and Drug
Administration (FDA) approved drugs and disease-related genes
in Online Mendelian Inheritance in Man (OMIM)2 revealed that
most drug targets are not closer to the disease genes in the protein
interaction network than a randomly selected group of proteins3.
This suggests that traditional drugs lack selectivity towards the
genetic cause of the disease, targeting instead the symptoms of the
disease. At the same time, several network-based approaches have
focused on predicting novel targets and new uses for existing
drugs4,5. Current approaches rely on target profile similarity,
defined by either the number of targets two drugs share6,7 or the
shortest paths between the drug targets in the interactome8–11.
However, the existing literature-derived interaction sets are
incomplete12 and biased towards more studied proteins, like
drug targets and disease proteins13, shortcomings ignored by the
existing network-based methods. In this study, we introduce an
unsupervised and unbiased network-based framework to analyse
the relationships between drugs and diseases. Recent studies have
demonstrated that the genes associated with a disease tend to
cluster in the same network neighborhood, called the disease
module, representing a connected subnetwork within the
interactome rich in disease proteins12,14. We, therefore,
hypothesized that for a drug to be effective for a disease, it
must target proteins within or in the immediate vicinity of the
corresponding disease module. To test this hypothesis, we
integrate protein–protein interaction, drug-disease association
and drug-target association data allowing us to analyse the
topological characteristics of drug targets with respect to the
disease proteins. We propose a drug-disease proximity measure
that helps us quantify the therapeutic effect of drugs,
distinguishing non-causative and palliative from causative and
effective treatments and offering an unsupervised approach to
uncover novel uses for existing drugs.

Results
Proximity between drugs and diseases in the interactome. We
start with all 1,489 diseases defined by Medical Subject Headings
(MeSH) compiled in a recent study12 (Methods section). For each
disease, we retrieve associated genes from the OMIM database2

and the GWAS catalog15. We focus on the diseases with at least
20 disease-associated genes in the human interactome such that
the diseases are genetically well characterized and are likely to
induce a module in the interactome12. We gather the drug-target
information on FDA approved drugs from DrugBank16 and
the indication information (the diseases the drug is used for)
from the medication-indication resource high-precision subset
(MEDI-HPS)17, which is then filtered by strong literature
evidence using Metab2MeSH (ref. 18) to represent a high-
confidence drug-disease association data set. In total, we identify
238 drugs whose indication matches 78 diseases and whose
targets are in the human interactome containing 141,150
interactions between 13,329 proteins. Several of these drugs are
recommended for more than one disease, resulting in 402 drug-
disease associations between 238 drugs and 78 diseases. The

average number of targets in the network per drug is ntarget¼ 3.5
and the mean degree of the targets is ktarget¼ 28.6, larger than the
interactome’s average degree k¼ 21.2 (Supplementary Fig. 1), a
difference that we attribute to the literature bias towards drug
targets.

To investigate the relationship between drug targets and
disease proteins, we develop a relative proximity measure that
quantifies the network-based relationship between drugs and
disease proteins (proteins encoded by genes associated with the
disease). For this, for each drug-disease pair, we compare the
network-based distance d between the known drug targets and
the disease proteins to the expected distances drand between them
if the target-disease protein sets are chosen at random within the
interactome (Methods section). We initially focus on two distance
measures d to determine the relative proximity: (i) The most
straightforward measure is the average shortest path length,
ds, between all targets of a drug and the proteins involved in the
same disease; (ii) Acknowledging that a drug may not necessarily
target all disease proteins, we also use closest measure,
dc, representing the average shortest path length between the
drug’s targets and the nearest disease protein. In this case, we
have dc¼ 0 only if all drug targets are also disease proteins. For
both distance measures, ds and dc, the corresponding relative
proximity zs and zc captures the statistical significance (z-score,
z ¼ d�m

s ) of the observed target-disease protein distance
compared with the respective random expectation. Figure 1a
illustrates the calculation of the relative proximity zc using the
closest measure dc, which, as we show later, outperforms other
distance measures.

To demonstrate the utility of the relative proximity, Fig. 1b
shows the shortest paths between drug targets and disease
proteins for two known drug-disease associations: Gliclazide–type
2 diabetes (T2D) and daunorubicin–acute myeloid leukaemia
(AML). Gliclazide binds to ATP-binding cassette sub-family C
member 8 (ABCC8) and vascular endothelial growth factor A and
stimulates pancreatic beta-islet cells to release insulin. ABCC8 is a
known T2D gene (MIM:600509) and there is at least one protein
associated with T2D within two steps of vascular endothelial
growth factor A’s neighborhood corresponding to an average
distance of dc¼ 1.0 between the drug and the disease using the
closest measure. The relative proximity between the drug and the
disease is zc¼ � 3.3, suggesting that the targets of gliclazide are
closer to the T2D proteins than expected by chance (Fig. 1c).
Similarly, the relative proximity of daunorubicin, an anthracy-
cline aminoglycoside inhibiting the DNA topoisomerase II
(TOP2A and TOP2B), to AML is zc¼ � 1.6, offering network-
based support for daunorubicin’s therapeutic effect in AML. As a
negative control, we measure the relative proximity of gliclazide
to AML and daunorubicin to T2D, pairings whose efficacies are
not known. In both cases, the disease proteins and drug targets
are not closer than expected for randomly selected protein sets
(zc¼ 1.3 and zc¼ 1.0, respectively), suggesting that these drugs do
not target the disease module of other diseases, but they are
specific to the module of the disease they are recommended for.

To generalize these findings, we group all possible 18,564 drug-
disease associations between 238 drugs and 78 diseases into 402
known (validated) drug-disease associations that are reported in the
literature (like gliclazide and T2D) and the remaining 18,162
unknown drug-disease associations that are not known (and are
unlikely) to be effective (Supplementary Data 1). For example, we
do not expect gliclazide to be more effective on AML than any
other randomly chosen drug. Yet, a few of the 18,162 unknown
drug-disease pairs may correspond to effective treatments,
representing novel candidates for drug repurposing, challenging
us to identify which ones. Consistent with previous observations3,
only in 62 of the 402 known drug-disease associations (15.4%),
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a drug-target coincides with a disease protein. On the other hand, in
490 of 18,162 unknown drug-disease pairs (2.7%) the drug targets
are known disease proteins, but not associated with the drug’s
actual disease indication. Although in both classes (known and
unknown), the overlap between drug targets and disease proteins is
low, the much higher ratio among known drug-disease associations
(Fisher’s exact test, odds ratio¼ 6.6, two-sided P¼ 5.2� 10� 27)
suggests that direct targeting of known disease proteins is a rare but
important therapeutic component in disease treatment.

Drugs target the local neighborhood of the disease proteins.
We first test how well relative proximity discriminates the 402
known drug-disease pairs from the 18,162 unknown drug-disease
pairs by comparing the area under Receiver Operating Char-
acteristic (ROC) curve (AUC, Methods section) for different
distance measures. In addition to the closest (dc) and shortest (ds)
measures discussed above, we measure relative proximity between
a drug and a disease using three other network-based distance
measures: (i) the kernel measure, dk, which downweights longer
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Figure 1 | Network-based drug-disease proximity. (a) Illustration of the closest distance (dc) of a drug T with targets t1 and t2 to the proteins s1, s2 and s3

associated with disease S. To measure the relative proximity (zc), we compare the distance dc between T and S to a reference distribution of distances

observed if the drug targets and disease proteins are randomly chosen from the interactome. The obtained proximity zc quantifies whether a particular dc is

smaller than expected by chance. To account for the heterogeneous degree distribution of the interactome and differences in the number of drug targets

and disease proteins, we preserve the number and degrees of the randomized targets and disease proteins. (b) The shortest paths between drug targets

and disease proteins for two known drug-disease associations: Gliclazide, a T2D drug with two targets and daunorubicin, a drug used for AML that also has

two targets in the interactome. The subnetwork shows the shortest paths connecting each drug target to the nearest disease proteins. Proteins are

coloured with respect to the disease they are associated with: T2D (blue) and AML (red). Drug targets are represented as triangles and coloured according

to whether they are targets of gliclazide (light blue) and daunorubicin (brown). Blue and red links illustrate the shortest path from the drug targets to the

nearest disease proteins (of T2D and AML, respectively). Node size scales with the degree of the node within the subnetwork. In case of multiple disease

proteins with the equal shortest path lengths to the target, the disease protein with lowest degree in the interactome is shown. (c) The proximity zc of

gliclazide and daunorubicin to T2D and AML, indicating low zc for the recommended use of these drugs and high zc for their non-recomended use.
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paths using an exponential penalty, (ii) the centre measure, dcc,
which is the shortest path length between the drug targets and the
disease protein with the largest closeness centrality among
the disease proteins, (iii) the separation measure, dss, that records
the sum of the average distance between drug targets and disease
proteins using the closest measure and subtracts it from the
average shortest distance between drug targets and disease pro-
teins. We find that the relative proximity defined by the closest
measure dc (AUCzc ¼ 66%) offers the best discrimination among
the known and unknown drug-disease pairs (Fig. 2a), out-
performing the shortest (AUCzs ¼ 58%, DeLong’s AUC differ-
ence test P¼ 5.1� 10� 7), the kernel (AUCzk ¼ 61%,
P¼ 4.7� 10� 4), the centre (AUCzcc ¼ 58%, P¼ 1.2� 10� 5),
and the separation (AUCzss ¼ 59%, P¼ 2.1� 10� 4) measures.

The superior performance of the closest measure suggests that
drug targets do not have to be close to all proteins implicated in a
disease. That is, drugs tend to affect a subset of the disease
module rather than targeting the disease module as a whole.
Indeed, we find that most drugs exert their therapeutic effect on
disease proteins that are at most two links away (Supplementary
Fig. 2 and Supplementary Note 1). Note also that relative
proximity corrects for the biases of the traditional shortest
path-based measures: the closest distance is significantly
anti-correlated with the number of interactions the target
proteins have (Spearman’s rank correlation coefficient
r¼ � 0.46, P¼ 8.6� 10� 23), whereas relative proximity
associated with the closest distance show no correlation with
degree (r¼ � 0.01, P¼ 0.84, Fig. 2b,c, Supplementary Fig. 3 and
Supplementary Note 2).

Proximity improves on existing drug repurposing approaches.
The increasing interest in reusing existing drugs for novel
therapies has recently given rise to various approaches that aim to
identify candidate drugs with similar characteristics to known
drugs used in a disease7,8,19–20. We use interactome-based
drug-disease proximity to define similarity between two drugs
and compare it with existing approaches defining similarity
through (i) the shortest path distance between their targets in the
interactome, (ii) common targets, (iii) chemical similarity,
(iv) Gene Ontology (GO) terms shared among their targets, (v)
common differentially regulated genes in the perturbation profiles
of the two drugs in Library of Integrated Network-based Cellular
Signatures (LINCS) database (lincsproject.org) and (vi) common
side effects given in Side Effect Resource (SIDER) (ref. 21)
(Supplementary Note 3). We find that proximity-based similarity
discriminates known drug-disease pairs from unknown drug-
disease pairs better than most of the existing similarity-based
methods (AUCtargetproximity¼ 81%, Fig. 2d). The increase in the
AUC is significant compared with using shortest path-based
similarity (AUCtargetPPI¼ 71%, P¼ 7.4� 10� 14), chemical
similarity (AUCchemical¼ 78%, P¼ 0.03), functional similarity
(AUCGO¼ 71%, P¼ 4.8� 10� 18) and expression profile
similarity (AUCLINCS¼ 65%, P¼ 2.8� 10� 20). Proximity-based
similarity definition outperforms the similarity definition based
on shared targets, yet the improvement is not significant
(AUCtarget¼ 80%, P¼ 0.12). Despite having comparable
accuracy (AUCsideeffect¼ 81%, P¼ 0.56), the side effect
similarity-based method is only applicable to less than half of
the drug-disease pairs.

Although similarity-based methods are powerful in discrimi-
nating known drug-disease pairs from unknown drug-disease
pairs, they have two main drawbacks: (i) these methods rely on
the existing knowledge of drug and disease information, making
them prone to overfitting and (ii) they fail to provide insights on
the drug mechanism of action. Gene expression profile
consistency based approaches aim to overcome these limitations

by investigating correlations between the expression signatures of
drug perturbations and the expression profiles in diseases22,23.
We use the drug and disease signatures in drug versus
disease (DvD) resource24 and calculate a Kolomgorov-Smirnov
statistic-based enrichment score for the 1,980 (95 known,
1,885 unknown) drug-disease pairs that are in the DvD
data set. We show that, proximity yields better accuracy
than expression correlation-based prediction of drug-disease
associations (AUCproximity¼ 63% versus AUCDvD¼ 53%,
P¼ 0.01, Supplementary Note 4). Though, the poor perfor-
mance of the expression based approach is surprising, it is
consistent with a recent systematic analysis reporting similar
AUC values25. Therefore, proximity provides an alternative to the
drug similarity and gene expression based repurposing
approaches that can offer an interactome-based explanation
towards the drug’s effect on a disease. Their combination,
though, could offer increased predictive power, given the
orthogonal nature of the information the two classes of
methods use.

Proximity is a good proxy of therapeutic effect. The effective-
ness of proximity as an unbiased measure of drug-disease relat-
edness prompts us to ask: Are drugs (drug targets) that are closer
to the disease (disease proteins) more effective than distant drugs?
To answer this, we define a drug to be proximal to a disease if its
proximity follows zcr� 0.15, and distant otherwise (Methods
section). This threshold is chosen as it offers good coverage of
known drug-disease associations and few false positives
(Supplementary Fig. 4 and Supplementary Note 5), helping us
arrive to several key findings:

(i) Known drugs are more proximal to their disease: For 237 of
the 402 known drug-disease associations (59%), the drugs are
proximal to the disease they are indicated for (Fig. 2e). At the
same time, drugs are proximal in 7,276 of the 18,162 unknown
drug-disease associations (40%), representing numerous
potential candidates for drug repurposing. The ratio of known
drug-disease associations among proximal drug-disease
associations compared with the same ratio among distant
drug-disease associations is statistically highly significant
(Fisher’s exact test, odds ratio¼ 2.1, P¼ 5.1� 10� 14). In
other words, a drug whose targets are proximal to a disease is
twice more likely to be effective for that disease than a
distant drug.

(ii) Proximal drugs are more likely to be tested in clinical trials:
The proximal but currently unknown drug-disease pairs are
significantly over-represented in clinical trials compared
with the distant unknown drug-disease pairs (353 proximal
versus 341 distant drug-disease pairs, odds ratio¼ 1.6,
P¼ 4.5� 10� 9).

(iii) Most known drugs are not exclusive: We examine the
enrichment of known drug-disease associations among
significantly proximal (that is, zcr� 2) drug-disease pairs
and observe a significant increase in the ratio of known
drug-disease pairs compared with unknown pairs (odds
ratio¼ 5.2, P¼ 2.6� 10� 27). However, only 79 out of 402
known drug-disease pairs are significantly proximal to each
other. Therefore, a drug should be sufficiently selective (that
is, proximal to the disease) to have therapeutic effect but not
necessarily exclusive (significantly proximal to the disease).

(iv) Proximity can highlight non-trivial associations: We
find that in 18 known drug-disease pairs in which all
the drug targets are also disease proteins, the drugs
are proximal to the disease as one would expect. On the
other hand, in 44 pairs for which at least one but not
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all of the drug targets are disease proteins, all the drugs
are proximal to the disease with the only exception
of disopyramide, a cardiac arrhythmia drug (Fig. 3). In
176 of the remaining 340 known drug-disease associations
for which the drug targets do not coincide with any

of the disease proteins, the drug targets are proximal
to the disease, indicating that the interactome can
highlight non-obvious drug-disease associations in
which the drug does not directly target known disease
proteins.
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Pinpointing palliative treatments using proximity. Intriguingly,
for 165 known drug-disease pairs, the drugs are distant to the
disease they are recommended for, indicating that the inter-
actome is unable to explain the drug’s effect. The interactome

incompleteness can potentially explain the current limitations of
network-based drug-disease proximity. Yet, given that the lack of
efficacy is the leading reason for failure in drug development26,
we suspect that the drugs we fail to identify in the proximity of
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the disease might not be as effective as others. To investigate
whether proximity could explain drug efficacy we compile three
data sets: (i) Off-label treatments: For each known drug-disease
pair, we retrieve the label information from DailyMed and search
for the disease in the indication field. If the disease is not
mentioned in the indication field we mark this drug-disease
association as off-label use (and label use otherwise), resulting in
133 off-label drug-disease associations. (ii) Palliative treatments:
For each label use, we check whether the indication field in
DailyMed contains any statement referring to the non-causative
use of the drug in that disease (for example, manage, relieve,
palliate and so on.), yielding 50 palliative drug-disease pairs in
which the drug relieves the symptoms of the disease. We mark the
remaining 219 drug-disease pairs as non-palliative. (iii) Drug
efficacy information: We use side effect and efficacy reports
from FDA Adverse Event Reporting System and consider 204
drug-disease pairs associated with at least 10 reports. We count
the number of entries for the most commonly observed adverse
event and the number of entries reporting that the drug was
ineffective. The relative efficacy (RE) score is one minus the ratio
of the number of drug ineffective reports to the number of reports
with the most common adverse reaction. To confirm that
RE captures the palliative nature of drugs, we check the
distribution of RE scores of manually curated palliative and the
remaining known drug-disease pairs (Fig. 4a), finding that RE
scores are significantly lower for palliative drug-disease pairs
(one-sided Mann–Whitney U test P¼ 7.3� 10� 5 compared with
the distribution of RE scores of non-palliative uses and
P¼ 7.6� 10� 4 compared with that of off-label uses).

Next, we check whether interactome-based proximity
can distinguish palliative from non-palliative and off-label
drug-disease pairs, observing a significantly lower proximity for
drug-disease pairs not described as palliative in DailyMed
(Fig. 4b, P¼ 4.0� 10� 5 and P¼ 0.02 for non-palliative and
off-label uses, respectively). Given that the description for
palliative drug-disease pairs in DailyMed is likely to be
incomplete and the non-palliative drug-disease pairs likely
include palliative drugs as well, the observed segregation of the
palliative and the remaining pairs is striking. Moreover, the lower
proximity of off-label uses compared with palliative uses suggests
that the current ‘wisdom of the crowd’ (off-label treatments
recommended by physicians) include promising treatments, most
of which likely to be more effective than palliative treatments.

Finally, we explore the distribution of RE scores among
proximal and distant drug-disease pairs, finding significantly
higher RE scores for proximal drugs (Fig. 4c, P¼ 0.04). These
findings indicate that proximity is a good measure of a drug’s
efficacy in the clinic: proximal drugs are more likely
to be therapeutically beneficial than distant drugs that usually
correspond to palliative treatments.

Treatment bottlenecks. To illustrate the utility of the developed
framework, next we identify diseases in which proximity
successfully pinpoints the drugs prescribed for the disease. The
percentage of drugs that are proximal to their indicated disease
varies substantially over the 78 diseases. When we look at the 29
diseases for which there are at least five known drugs, we see that
most drugs used for asthma, Alzheimer’s disease (AD), cardiac
arrhythmias, cardiovascular diseases, diabetes, epilepsy, hyper-
sensitivity, kidney diseases, liver cirrhosis, systemic lupus ery-
thematosus and ulcerative colitis are proximal to the disease
(Fig. 4d, top panel). Similarly, among antineoplastic agents, the
drugs used for prostate cancer, breast cancer and lymphoma tend
to be proximal to the indicated diseases. Given that AD, breast
cancer, heart diseases and diabetes are prevalent in developed

countries, they have been at the centre of attention of pharma-
ceutical companies, potentially explaining the success of the
treatments. On the other hand, diseases for which the drugs are
distant often involve a substantial inflammatory component, like
Crohn’s disease, psoriasis and rheumatoid arthritis,
suggesting that most of the drugs used in these immune-system-
related diseases manage the inflammation or relieve the
symptoms of the disease. We also observe that most drugs used in
parkinsonian disorders are generally not proximal to the disease.
Indeed, for these diseases the RE values are substantially lower
compared with the rest of the diseases, confirming that the drugs
are more likely to be palliative (Fig. 4d, bottom panel).

To investigate whether certain groups of drugs are more likely
to be proximal to the diseases, we further check their anatomic
therapeutic chemical classification (Fig. 5). Again, we find that
proximal drugs tend to involve more mechanistic interventions
involving the endocrine system and metabolic processes, whereas
distant drugs are more enriched in anti-inflammatory and pain
relief related categories.

Uncovering therapeutic links between AD and T2D.
Developing effective treatment strategies for diseases requires an
understanding of the underlying mechanism of drug action. Next,
we show that the network-based proximity can provide insights
into the mechanism of action of glyburide and donepezil, two
drugs used in T2D and AD, respectively, revealing therapeutic
links between these two diseases. Using the pathway information
in Reactome database27, we identify the pathways that are
proximal to these drugs (Methods section). Consistent with the
known mechanism of action of glyburide, we find pathways
related to the regulation of potassium channels and secretion of
insulin (Supplementary Table 1). The drug-pathway proximity
also highlights the role of GABAB in regulating G protein
receptors during the insulin secretion process.

For donepezil, we find the acetylcholine-related pathway as one
of the closest pathways to the drug. Acetylcholinesterase, the
known pharmacological action target, catalyses the hydrolysis of
acetylcholine molecules involved in synaptic transmission. In
addition to the acetylcholine-related pathway, other closest
Reactome pathways to donepezil include ‘serotonin receptors’,
‘phosphatidylcholine synthesis’, ‘adenylate cyclase inhibitory
pathway’, ‘IL-6 signalling’ and ‘the NLRP3 inflammasome’, thus
providing an enhanced view of donepezil’s action (Supplementary
Table 1). Indeed, a recent study confirms the fundamental role of
NLRP3 in the pathology of AD in mice28, offering further insights
into how donepezil exerts its therapeutic effect in AD patients.
Interestingly, the ‘regulation of insulin secretion by acetylcholine’
is among the closest pathways for both drugs. T2D and AD are
known to share a common pathology and exhibit increased
co-morbidity29,30. In fact, repurposing anti-diabetic agents to
prevent insulin resistance in AD has recently gained substantial
attention31.

Dissecting therapeutic benefits from adverse effects. Proximity
helps us understand relationships between drugs and diseases and
discover novel associations. We first highlight several potential
repurposing candidates predicted by proximity among unknown
drug-disease pairs. One such candidate is nicotine, a drug
originally indicated for ulcerative colitis, which is closer to AD
(zc¼ � 1.2) than its original indication. Indeed, nicotine has
recently been argued to improve cognition in people with mild
cognitive impairment, a symptom that often precedes Alzheimer’s
dementia32. Not surprisingly, the closest pathways to nicotine are
acetylcholine-related pathways such as ‘acetylcholine binding and
downstream events’, ‘highly calcium permeable postsynaptic
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nicotinic acetylcholine receptors’ and ‘presynaptic nicotinic
acetylcholine receptors’, closely related to the pathways
proximal to donepezil, the AD drug above.

We also find that glimepiride and tolbutamide, two T2D drugs
that lower blood glucose by increasing the secretion of insulin, are
proximal to cardiac arrhythmia (zc¼ � 3.6 and zc ¼ � 2.3,
respectively). However, these drugs have recently been suggested

to induce adverse cardiovascular events33. Therefore, network-
based proximity does not always imply that the drug will improve
the corresponding disease. To the contrary, some drugs may even
induce the disease phenotype by perturbing the functions of the
proteins in the proximity of the disease module. To distinguish
between a novel treatment and a potential adverse effect, we
check the proximity of these drugs to the protein sets predicted to
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Figure 4 | Drug-disease proximity and efficacy. (a) The distribution of RE scores calculated using FDA Adverse Event Reporting System for palliative

(n¼ 50), non-palliative (n¼ 219) and off-label (n¼ 133) drug-disease pairs annotated based on DailyMed description. A drug-disease pair is marked

palliative if the indication in DailyMed referred to the non-causative use of the drug in that disease and non-palliative otherwise. If the indication is not in

the label, then it is marked as off-label. The median within each group is shown as a black dot. The contours represent the probability density of the data

points based on kernel density. Palliative uses have lower RE scores compared with non-palliative (one-sided Mann–Whitney U test ¼ 7.3� 10� 5) and off-

label uses (P¼ 7.6� 10�4). (b) The distribution of drug-disease proximity for palliative, non-palliative and off-label drug-disease pairs. The palliative uses

have higher proximity values (P¼4.0� 10� 5 and P¼0.02 compared with non-palliative and off-label uses, respectively). (c) The distribution of RE for

proximal (n¼ 237) versus distant (n¼ 165) drug-disease pairs. The proximal drug-disease pairs have higher RE scores (P¼0.04). (d) (Top panel) For each

disease, the number of known drugs that are proximal to the disease (dark blue) compared with the number of distant drugs (light brown). The ratio of

proximal drugs to all drugs is shown in red. The plot is split into two regions horizontally based on the ratio of proximal drugs: the diseases for which

(i) more than half of the drugs are proximal (yellow background) and (ii) the rest (grey background). (Bottom panel) the RE scores of drugs for each

disease are shown as red lines and the curve corresponds to the probability density estimate. The median within each disease is drawn by a solid line,

whereas the median RE over all the diseases is drawn as a dashed line. NA (not applicable) indicates that data for the corresponding disease is not available

(that is, fewer than 10 adverse reports). Note that for diseases in which most known drugs are proximal to the disease, the efficacy is also higher on average

compared with the rest.
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induce the side effects. The proteins inducing a given side effect
are predicted based on whether they appear significantly as the
targets of drugs with the side effect compared with the
targets of drugs without the side effect34 (Methods section).
Although glimepiride and tolbutamide are proximal to the
cardiac arrhythmia disease proteins in the network, they
are also proximal to the proteins inducing arrhythmia
(zside effect

c ¼ � 1:9 and zside effect
c ¼ � 1:0, respectively, Supple-

mentary Data 1). In line with earlier findings33, proximity
indicates that their use by patients with cardiovascular problems
requires caution.

Next, we provide interactome-based insights to the drug’s
action in some recent repurposed uses and clinical failures
(Table 1). For instance, we find that proximity can explain
why plerixafor, a drug developed against HIV to block viral
entry in the cell that failed to meet its end point, is repurposed
for non-Hodgkin’s lymphoma. We identify that the proximity
of plerixafor to the non-Hodgkin’s lymphoma disease
proteins is zc¼ � 2.4. On the other hand, when we look at

the proximity of tabalumab and preladenant, two drugs failed
during clinical trials due to lack of efficacy for systemic lupus
erythematosus and parkinson disease, respectively, we observe
that these drug-disease pairs are more distant than expected for
a random group of proteins in the interactome (zc40). Another
recent failure is semagacestat, an AD drug that was found to
worsen the condition. Semagacestat is proximal to AD proteins
in the interactome (zc¼ � 5.6), indicating that the drug should
affect the disease. We are not able to predict the direction of the
drug’s effect (that is, beneficial or harmful), as there is no
protein significantly associated with AD as a side effect. In the
case of terfenadine, an antihistamine drug used for the
treatment of allergic conditions, however, we find the drug to
be proximal to both the cardiac arrhythmia disease proteins
(zc¼ � 2.2) and the proteins predicted to induce arrhythmia
(zside effect

c ¼ � 2:6) explaining its withdrawal from markets
worldwide.

Finally, using proximity, we provide potential repurposing
candidates for 2,947 rare diseases retrieved from orpha.net
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10331 ARTICLE

NATURE COMMUNICATIONS | 7:10331 | DOI: 10.1038/ncomms10331 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


(Supplementary Data 2). Rare diseases are often ignored by
pharmaceutical companies due to the small percentage of the
population affected and conventional methods are typically
unable to offer any candidates. We believe that the proximity-
based predictions can provide promising reuses. We note,
however, that these predictions need to be validated in the clinic
before they can be recommended.

Discussion
Disease phenotypes are typically governed by defects in multiple
genes whose concurrent and aberrant activity is necessary for the
emergence of a disease. These disease genes are not randomly
distributed in the interactome, but agglomerate in disease
modules that correspond to well-defined neighbourhoods of the
interactome. Here, we introduced a computational framework to
quantify the relationship between disease modules and drug
targets using several distance measures that capture the network-
based proximity of drugs to disease genes. The systematic analysis
of a large set of diseases shows that drugs do not target the disease
module as a whole but rather aim at a particular subset of the
disease module. Moreover, the impact of drugs is typically local,
restricted to disease proteins within two steps in the interactome.

Proximity provides insights into the drug mechanism of action,
revealing the pathobiological components targeted by drugs and
increases the applicability and interpretability for repurposing
existing drugs. We find that if a drug is proximal to the disease, it
is more likely to be effective than a distant drug. We argue that
for diseases in which the drugs are distant, the drugs alleviate the
symptoms of the disease. We observe that off-label treatments are
at least as effective as palliative uses mentioned in the label,
providing an interactome-level support for off-label uses of drugs.
We use adverse event reports collected by FDA to offer evidence
that many disorders involving immune response are indeed

targeting the disease symptoms. We also demonstrate several
proof-of-concept examples in which proximity successfully
predicts both the therapeutic and the adverse effects of known
drugs.

We also used proximity to define similarity between two drugs
and showed that proximity performed at least as good as existing
similarity-based approaches and covered larger number of
drug-disease associations. Nevertheless, similarity-based methods
can only predict drugs for diseases that already have a drug,
therefore are ineffective for drugs that do not share any target
with existing drugs or for diseases without known drugs, as it is
the case for many rare diseases. Furthermore, these approaches
typically do not offer a mechanistic explanation of why a drug
would (or would not) work for a disease. On the other hand,
proximity enables us to suggest candidate drugs to be repurposed
in rare diseases.

Given the limitations of the current interactome maps, from
incompleteness to investigative biases, we have explored how the
number and the centrality of drug targets and disease proteins
influence their network-based proximity. We find that proximity
is not biased with respect to neither the number of targets a drug
has nor their degrees. Thus, proximity corrects a common pitfall
in existing studies that do not account for the elevated number of
interactions of drug targets. Moreover, we find that the integrated
interactome used in this study captures the therapeutic effect of
drugs better than both functional associations from STRING
database35 and protein interactions from high-throughput binary
screens13, two interactome maps widely used in the literature
(Supplementary Table 2). A potential drawback of proximity
is that it relies on known disease genes, drug targets and
drug-disease annotations, all of which are known to be far from
complete. Although we ensure that the annotations used in the
analysis are of high quality using various control data sets
(Supplementary Table 2 and Supplementary Note 6) the coverage

Table 1 | Proximity values for several repurposed and failed drugs.

Drug Description Phenotype Proximity (z)

Repurposed uses
Plerixafor Repurposed to treat non-Hodgkin’s

lymphoma
Non-Hodgkin’s
lymphoma

� 2.4

Ropinirole Repurposed to treat restless legs
syndrome

Restless legs syndrome � 1.1

Sildenafil Repurposed to treat erectile dysfunction Erectile dysfunction � 1.0

Metadata based observations49

Drospirenone Confer protection against endometrial
cancer

Endometrial cancer � 1.1

Levonorgestrel Confer protection against endometrial
cancer

Endometrial cancer � 1.6

Failures due to lack of efficacy
Tabalumab Showed lack of efficacy for systemic lupus

erythematosus
Systemic lupus
erythematosus

1.8

Preladenant Discontinued trials for Parkinson due to
lack of improvement compared with
placebo

Parkinson’s disease 0.2

Iniparib Failed to achieve improvement while being
tested for squamous non-small-cell lung
cancer

Squamous cell cancer 0.0

Failures due to adverse effetcs
Semagacestat Failed trials due to worsening AD AD � 5.6
Terfenadine Withdrawn due to inducing cardiac

arrhythmia
Cardiac arrhythmia
Arrhythmia (side effect)

� 2.2
� 2.6
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of our analysis can be increased as more data become available.
Furthermore, the directionality of the drug’s predicted effect
(for example, whether it is beneficial or harmful) depends on the
characterization of the proteins inducing the disease, information
that is currently limited to only a small subset of the diseases.

Overall, our results indicate that network-based drug-disease
proximity offers an unbiased measure of a drug’s therapeutic
effect and can be used as an effective and holistic tool to identify
efficient treatments and distinguish causative treatments from
palliative ones. While proximity can provide a systems level
explanation towards the drug’s effect via quantifying the
separation between the drug and the disease in the interactome,
understanding the therapeutic effect of drugs at the individual
level (that is, patients with different genetic predisposition)
requires incorporating large scale patient level data such as
electronic health records and personal genomes and remains the
goal of future work in this area. It would also be interesting to
extend the analysis presented here to drug combinations, in
which the proximity of the targets of the combination is likely to
be different than the average proximity of the drugs individually,
potentially giving insights into the synergistic effects.

Methods
Drug, disease and interaction data sets. The disease-gene data relied on Menche
et al.12, defining diseases using MeSH. Disease-gene associations were retrieved
from OMIM and GWAS catalog using UniProtKB (ref. 36) and PheGenI (ref. 37),
respectively. Only the genes with a genome-wide significance P value o5.0� 10� 8

were included from PheGenI. We used only the diseases for which there were at
least 20 known genes in the interactome. This cutoff based on number of disease
genes ensures that the diseases are genetically well characterized and are likely to
induce a module in the interactome12. For each disease, we looked for information
on FDA approved drugs in DrugBank (downloaded on July 2013) and matched 79
of these diseases with at least one drug using MEDI-HPS (ref. 17; using
MEDI_01212013_UMLS.csv file) and Metab2Mesh (ref. 18; retrieved from
metab2mesh.ncibi.org on June 2014). MEDI-HPS contains drug-disease
associations compiled from RxNorm, MedlinePlus, SIDER (ref. 21) and Wikipedia.
We considered a drug to be indicated for a disease if and only if the and there was a
strong association based on text-mining in Metab2Mesh (Q valueo1.0� 10� 8),
yielding 337 drugs. We excluded 99 drugs that either had no known targets in the
interactome or had the same targets as another drug used for the same disease,
resulting in a total of 238 unique drugs and 384 targets. Note that we only
considered the pharmacological targets (‘Targets’ section in DrugBank), excluding
the enyzmes, carriers and transporters that were typically shared among different
drugs. To ensure the quality of the drug-disease associations, we downloaded label
information for each of these drugs from DailyMed (dailymed.nlm.nih.gov)
and checked the indication field (Supplementary Data 1). For each drug,
we first matched the drug name (and synonyms if there was no match) in the
Rx_norm_mapping file and fetched the drug’s structured product labelling id(s).
We then queried DailyMed using the structured product labelling id. We noticed
that Felbamate was incorrectly annotated to be used for aplastic anaemia in MEDI-
HPS while it was a clear contraindication for this disease. Accordingly, we removed
aplastic anaemia from the analysis as there were no other drugs associated with it.
For calculating enrichment of proximal drug-disease pairs in clinical trials, we
retrieved information on the drugs and the diseases they were tested for from
clinicaltrials.gov.

We took the human protein–protein interaction (PPI) network compiled
by Menche et al.12 that contained experimentally documented human physical
interactions from TRANSFAC38, IntAct39, MINT40, BioGRID41, HPRD42,
KEGG43, BIGG44, CORUM45, PhosphoSitePlus46 and a large scale signalling
network47. We used the largest connected component of the interactome in our
analysis, consisting of 141,150 interactions between 13,329 proteins. ENTREZ
Gene IDs were used to map disease-associated genes to the corresponding proteins
in the interactome. The interactome and disease-gene association data is provided
as a supplementary data set in Menche et al.12 The drug-target interactions are
provided in Supplementary Data 3.

To calculate proximity of drugs for rare diseases, we downloaded 3,323 diseases
and genes associated with them from orpha.net. For each disease gene, we mapped
the Uniprot ID to Gene ID using the external reference field in the XML file
and filtered for only the diseases that had at least a known disease protein in the
interactome, yielding 2,947 diseases. We then calculated the proximity between
each FDA approved drug and the disease. The drugs that did not have any targets
in the interactome or that had the same targets as another drug were excluded.

Network-based proximity between drugs and diseases. The proximity between
a disease and a drug was evaluated using various distance measures that take into

account the path lengths between drug targets and disease proteins. Given S, the set
of disease proteins, T, the set of drug targets and d(s,t), the shortest path length
between nodes s and t in the network, we define:

Closest : dc S;Tð Þ ¼ 1
Tk k
X

t2T

mins2Sdðs; tÞ ð1Þ

Shortest : ds S;Tð Þ ¼ 1
Tk k
X

t2T

1
Sk k
X

s2S

dðs; tÞ ð2Þ

Kernel : dk S;Tð Þ ¼ � 1
Tk k
X

t2T

ln
X

s2S

e�ðd s;tð Þ þ 1Þ
Sk k ð3Þ

Centre : dcc S;Tð Þ ¼ 1
Tk k dðcentreS; tÞ ð4Þ

where centreS, the topological centre of S was defined as

centreS¼ argminu2S

X

s2S

dðs; uÞ

in case the centreS is not unique, all the nodes are used to define the centre and the
shortest path lengths to these nodes are averaged.

Separation : dss S;Tð Þ ¼ dispersion S;Tð Þ� d
0
c S; Sð Þþ d

0
c T;Tð Þ

2
ð5Þ

where dispersion S;Tð Þ ¼ jjTjjdc S;Tð Þþ jjSjjdc T;Sð Þ
jjTjj þ jjSjj and d

0
c is the modified closest measure

in which the shortest path length from a node to itself is infinite.
To assess the significance of the distance between a drug and a disease (T,S), we

created a reference distance distribution corresponding to the expected distances
between two randomly selected groups of proteins matching the size and the
degrees of the original disease proteins and drug targets in the network. The
reference distance distribution was generated by calculating the proximity between
these two randomly selected groups, a procedure repeated 1,000 times. The mean
md(S,T) and s.d. sd(S,T) of the reference distribution were used to convert an observed
distance to a normalized distance, defining the proximity measure:

z S;Tð Þ ¼
d S;Tð Þ� mdðS;TÞ

sdðS;TÞ

due to the scale-free nature of the human interactome, there are few nodes with
high degrees. To avoid repeatedly choosing the same (high degree) nodes during
the degree-preserving random selection, we used a binning approach in which
nodes within a certain degree interval were grouped together such that there
were at least 100 nodes in the bin. Accordingly, each bin Bi,j was defined as
Bi,j¼ {uAV|irkuoj} containing the nodes with degrees i to minimum possible
j such that ||Bi,j||Z100.

Area under ROC curve and optimal proximity cutoff analysis. We used AUC to
evaluate how well the distance measures discriminated known drug-disease pairs
from unknown drug-disease pairs. Given a set of known drug-disease associations
(positive instances) and a set of drug-disease couplings in which the drug is not
expected to work on the disease (negative instances), the true positive rate and false
positive rate were calculated at different thresholds to draw the ROC curve. The
area under this curve was computed using the trapezoidal rule. While known drug-
disease associations can be used as positive control, defining the negative control
(drugs that have no effect on a disease) is not straightforward. As a proxy, we
assumed that all unknown drug-disease associations were negatives, thereby
ignoring potential positive cases among the unknown associations. Furthermore, to
control for the size imbalance of known and unknown drug-disease associations,
we randomly chose 402 pairs among unknown drug-disease associations and used
them as negatives in the AUC calculation. We repeated this procedure 100 times
and used the average of the AUC values to compare the distance measures
(Supplementary Fig. 4). Again, the AUC values were consistent with what we
observed using all unknown drug-disease pairs as negatives, pointing out the
robustness of drug-disease proximity against negative data selection. In both
models, the closest measure discriminates best the known drug-disease associations
from the random drug-disease associations, as it was observed using all unknown
drug-disease pairs as negatives.

To find the optimal network-based proximity threshold (zthreshold
c ) for which a

drug was more likely to work on (proximal to) a certain disease, we used proximity
versus sensitivity and specificity curves. Sensitivity corresponds to the percentage of
the positive (known) drug-disease associations that are found proximal among all
positive drug-disease associations. Specificity corresponds to the percentage of the
negative (unknown or random) drug-disease associations that are not proximal
among all negative drug-disease associations. Accordingly, the network-based
proximity threshold, zthreshold

c , giving both high coverage (assessed by sensitivity)
and low number of false positives (assessed by 1-specificity) was defined as the
value at which the sensitivity and specificity curves intersected (Supplementary
Fig. 4). In our analysis, we set zthreshold

c ¼ � 0:15, that is, a drug was defined to be
proximal to a disease if the proximity between them was r� 0.15. To ensure the
robustness of zthreshold

c , we repeated the analysis on two other data sets and showed

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10331 ARTICLE

NATURE COMMUNICATIONS | 7:10331 | DOI: 10.1038/ncomms10331 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications


that the zthreshold
c value was similar (Supplementary Note 5). In addition to

sensitivity and specificity, we provide F-score (harmonic mean of precision and
sensitivity) measures at different proximity cutoffs. A different cutoff value can be
used to define proximity depending on the desired coverage and false positive rate.

Evaluating the therapeutic effect of drugs. We annotated the drug-disease
associations based on whether the label information in DailyMed contained the
drug-disease association given in MEDI-HPS. Accordingly, we marked 269
drug-disease associations appearing in the label as label use and the remaining 133
drug-disease associations as off-label use (Supplementary Data 1). We also looked
for statements referring to the non-causative use of the drug in that disease in the
DailyMed indication field. We specifically searched for sentences containing the
following keywords and their variations: ‘palliative’, ‘symptomatic’ and ‘signs and
symptoms’. We required that the disease the drug was used for was unambiguously
mentioned in the indication field. This data set contained 50 of 402 known
drug-disease pairs in which the drug was used to manage the signs and symptoms
of the disease (Supplementary Data 1).

We compiled drug efficacy information using the adverse event reports submitted
to FDA Adverse Event Reporting System. A report lists the patient reaction for a
given drug and disease including ‘pain’, ‘nausea’ and ‘drug ineffective’ among many
other reactions. We used openFDA Application Programming Interface (api.fda.gov/
drug) to retrieve the adverse reaction information and considered only 204 drug-
disease pairs for which there were at least 10 adverse event reports for the most
common adverse reaction. We counted the number of reports containing the ‘drug
ineffective’ reaction (ninefficient) and derived a score, RE, by comparing it with the
number of most occurring reaction (ntop) for that drug-disease pair. The RE is
defined as the complement to one of relative inefficacy, where relative inefficacy is
the ratio of the number of ‘drug ineffective’ reports to the number of most common
adverse event reports. Hence,

RE ¼ 1� ninefficient

ntop

The RE takes values between 0 (poorest efficacy, ‘drug ineffective’ reports are the
most common reports) and 1 (there is no ‘drug ineffective’ report associated with
this drug-disease pair). For instance, among the reports containing atorvastatin and
arteriosclerosis, ‘myalgia’ was the most common reaction with 13 occurrences and
there were two reports containing ‘drug ineffective’, yielding RE¼ 0.85. When
multiple drugs are reported in the same entry, the observed reactions may not be due
to all drugs. Nevertheless RE still provides a reasonable proxy for the efficacy of the
drug. In addition to the drug names provided in DrugBank, synonyms and brand
names were queried through the API and the query returning the most results was
chosen to represent the drug and used in further queries fetching reactions. The
disease names were also modified to match the names used in the openFDA data set.

Network-based pathway and side-effect proximity analysis. To identify the
biological pathways affected by a drug in the human interactome, we used the
closest measure to quantify the proximity between drugs and pathways. The drug-
pathway proximity is the normalized distance calculated between the drug targets
and proteins belonging to a given pathway. Similar to drug-disease proximity,
randomly selected protein sets matching the original protein sets in size and
degrees were used to calculate the mean and the s.d. for the z-score calculation. We
used all Reactome pathways provided in MsigDB (ref. 48) that had at most 50
proteins (as larger pathways tend to describe broader biological processes) and
ranked all the pathways with respect to their proximity to a given drug. We report
the proximity values between the drugs and the diseases, pathways, and side effects
in Supplementary Data 1.

To check whether a drug was proximal to the proteins inducing certain side
effects, we first defined the protein sets inducing side effects and then calculated the
network-based proximity of drug targets to these proteins (same as we did for
disease and pathway proteins). The side-effect proteins were identified using a
Fisher’s test-based enrichment analysis34. Accordingly, for each side-effect reported
for at least five drugs in SIDER21 and for each target of these drugs, we counted the
number of drugs that the side effect and drug-target appeared together as well as
the number of drugs in which they appeared individually (only side effect or only
drug) and did not appear at all together. We then corrected the two-sided P value
for multiple hypothesis testing using Benjamini and Hochberg’s method to decide
whether a drug-target induced a certain side effect. For each side effect, the targets
o20% false discovery rate were predicted to induce the side effect. For each of the
78 diseases in the data set, we manually mapped the MeSH disease terms to SIDER
side-effect terms where available (58 out of 78 diseases) and used 17 side effects
that had at least one predicted protein. The proximity values between the drugs and
these side effects are given in Supplementary Data 1. The targets inducing these
side effects are given in Supplementary Data 3. In addition to 238 FDA approved
drugs used in the analysis, we provide the drug disease and drug side effect
proximities of 45 withdrawn drugs that have at least one corresponding target in
the interactome (Supplementary Data 1).

Statistical tests and code availability. We used Fisher’s exact test and two-sided
P values associated with it to evaluate the strength of the enrichment of proximal
drug-disease pairs among known and unknown drug-disease pairs. The alpha value

for the significance of P values was set to 0.05. For assessing difference between
means of distribution of RE values, one-sided Mann–Whitney U test was used with
the same alpha value as before. The alternative hypotheses for the one-sided test
were (i) the palliative drugs were expected to have lower RE values, (ii) the pal-
liative drugs were expected to have larger proximity values and (iii) the proximal
drugs were expected to have higher RE values. We used R (r-porject.org) for
statistical tests and data visualization and Python (python.org) to parse various
data sets and to calculate drug-disease proximity (see toolbox package located at
github.com/emreg00/toolbox).
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