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Abstract: The early developmental phase is of critical importance for human health and disease later
in life. To decipher the molecular mechanisms at play, current biomedical research is increasingly
relying on large quantities of diverse omics data. The integration and interpretation of the different
datasets pose a critical challenge towards the holistic understanding of the complex biological pro-
cesses that are involved in early development. In this review, we outline the major transcriptomic
and epigenetic processes and the respective datasets that are most relevant for studying the pericon-
ceptional period. We cover both basic data processing and analysis steps, as well as more advanced
data integration methods. A particular focus is given to network-based methods. Finally, we review
the medical applications of such integrative analyses.
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1. Introduction

In recent decades, a digital revolution has taken place in many scientific fields. In
biology, we are able to produce large amounts of omics data (e.g., genomics, transcriptomics,
proteomics, epigenomics, and metabolomics), which allow us to describe biological events
in all their complexity. This has also led to a shift in the way we study, diagnose, and treat
diseases in medicine, moving away from focusing solely on symptoms and clinical signs
towards more holistic and data-driven approaches [1].

Such approaches are also indispensable to reveal the developmental origins of health
and disease (DOHaD) (Figure 1A). Indeed, the earliest period of life is especially complex:
It involves several closely interacting individuals, first and foremost the baby and the
mother, but the father and the environment also play important roles and may condition
different growth trajectories [2] (Figure 1B). For example, the phenomenon of imprinting
in embryo development, i.e., the silencing of specific genes, leads to different outcomes
depending on whether it happens on the mother’s or the father’s allele [3]. Several events,
such as hypomethylation and microRNA regulation, can cause the loss of imprinting in
the insulin-like growth factor 2 (IGF2) [4]. Normally, this gene is expressed only from
the paternal copy and silenced on the maternal one. The expression of IGF2 on both
alleles leads to widespread genomic, proteomic, and metabolomic changes responsible for
various pathological conditions, such as hyperplasia, cancer, and embryo developmental
disorders [5] (Figure 1C). The complexity of this example illustrates the need for experts
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from different fields to join forces and for an integrative view and analysis of the numerous
and complementary layers of information that are at play [6].
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Figure 1. Dissecting biological complexity in the different layers of biological organisation helps in
prevention, diagnosis and treatment. (A) Genetic perturbation during the periconceptional period
(first two weeks after conception) can propagate through the different layers of biological networks:
transcriptome, epigenome, proteome, cellular level and organ level leading to predisposition for
disease phenotypes later on in life. Dissecting and integrating these biological layers are crucial for
prevention, early diagnosis and potential treatments. (B) Early life conditioning can influence growth
trajectories in life, contributing in predisposition for different phenotypes (health, short, and obese).
(C) Epigenetic modifications, such as DNA methylation in particular regions of the DNA containing
imprinting genes, could alter the normal genetic balance of the maternal and paternal alleles. As an
example, we show the consequences of alterations of the IGF2-H19 imprinting gene balance, which
can lead to either gigantism (Beckwith–Wiedemann syndrome) or nanism (Russell–Silver syndrome).
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The goal of this review is to facilitate the adoption of omics-based approaches in
DOHaD research. We focus particularly on transcriptomics and epigenomics, given their
widespread use and biological importance to DOHaD. We start with a brief introduction to
transcriptomic data analysis. Next, we provide an overview of the plethora of epigenetic
mechanisms at play in DOHaD. Finally, we introduce network-based methods as a tool for
data integration from heterogeneous data sources and provide some concrete examples in
the DOHaD context.

2. Transcriptomic View of Development and Analysis

Transcriptomics is the study of transcripts, or the expressed RNAs present in cells.
From a transcriptomic perspective, human development can be seen as a continuous process
in which fertilisation begins the transformation of the transcriptionally inactive oocyte into
the active zygote, a process known as the maternal–zygotic transition [7,8]. This transition
is but one of many windows of transcriptomic changes that the embryo undergoes as it
develops and differentiates from a single cell to a complete organism [9,10]. These transition
windows, often accompanied by epigenetic changes, have been suggested to be vulnerable
periods in the embryo development, and disruptions during these periods can have lasting
consequences in later life, as summarised in the DOHaD concept [11,12]. We describe how
these transcripts (coding and non-coding RNA) regulate DNA expression and accompany
epigenetic regulation mechanisms in the next section, while, in this section, we focus on the
main principles of the bioinformatic pipeline used when facing a transcriptomic dataset
and on the biological implications of these steps.

At its core, transcriptomic data analyses operate on the number of detected transcripts
as a quantitative measure of gene expression. Historically, microarrays and RNA-seq
have provided gene expression information for a group of cells. More recently, single-cell
technologies allow us to measure transcript expression on a single-cell resolution [13,14].
The raw data of both bulk and single-cell technologies require several analytical steps,
recapitulated in Figure 2 and described in the following sections.

2.1. Data Preprocessing

Several pre-processing steps need to be performed before transcriptomic data can
be analysed. The first step, common to all platforms, is the alignment of transcripts to
their source in the DNA, so that we may identify the genes that are being expressed.
Over the years, many tools have been developed to perform this task [15]; widely used
examples include STAR [16], BWA [17], and HISAT2 [18]. Alignments have to be performed
against a reference database, typically an assembled genome and its annotations, for which
commonly used sources are UCSC, NCBI, and Ensembl [19–21]. When attempting to
replicate an analysis, care must be taken to use the same set of annotations as there are
significant differences between them [22].

Once the transcripts have been aligned, the number of transcripts present for each
gene can be tallied up to measure their expression levels. However, this number needs
to be normalised before further analysis can take place to account for noise and biases of
sequencing technologies. Noise may vary between batches due to variations in sample
and preparation quality, and in some technologies, such as microarrays, high expression
levels may cause saturation, resulting in a non-linear response. Controls, such as spike-ins
or housekeeping genes, may be employed to provide a stable baseline for normalisation,
though purely mathematical approaches, such as quantile normalisation, are also used [23].

Background noise is especially pronounced in single cell RNA-seq (scRNA-seq)
datasets, as these platforms operate on a small volume per sample. The nature of this
technology requires a normalisation step for comparing the counts of gene values across
samples, such as reads per million/counts per million (RPM/CPM), which simply nor-
malises the detected features to the total number of counts within the sample. Further
development resulted in reads/fragments per kilobase million (RPKM/FPKM) [24] and
transcripts per million (TPM) [25], which also take the gene length into account to avoid
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the overrepresentation of longer genes with more numerous exons. The Trimmed Mean of
M-values (TMM) and Relative Log Expression (RLE) take this a step further, by making the
assumption that the majority of genes are similar across samples and using them as control
to allow for a more accurate inter-sample comparison [26,27].
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Figure 2. Transcriptomic analysis pipeline. Starting from the raw read alignments, several steps
are needed to obtain concrete biological results, such as the identification of differential expressed
genes or cluster marker genes. The first step is to align gene sequences to a gene annotation reference
to be able to count the number of reads for each gene. This will allow us to obtain a count matrix,
which can be used for differential expression analysis, identifying genes that are significantly changed
(up/down regulated) in certain conditions and visualising them for example in a volcano plot. In
parallel, the dimensions of the count matrix can be reduced and visualised with several techniques
(i.e., PCA, t-SNE, and UMAP). This allows to identify clusters and, in the context of single-cell
experiments, also to infer developmental trajectories.
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2.2. Dimensionality Reduction

Transcriptomic datasets contain expression levels of thousands of transcripts and
are thus by nature very high-dimensional. To enable more efficient downstream analy-
ses, such as the identification of clusters, dimensionality reduction is often applied. The
most commonly used dimensionality reduction methods are principal component anal-
ysis (PCA) [28], t-stochastic neighbour embedding (t-SNE) [29], and uniform manifold
approximation and projection (UMAP) [30]. PCA is by far the simplest and fastest method
and works by calculating the vectors on which the dataset is most variable. Though it is
quick and preserves global distances, PCA is offset by losing information from the culled
components and the linear modelling inherent in the data processing, which often results
in a lower ability to separate different classes that may be contained in the data. It is also
not very useful for visualising datasets in which the variance is spread over a large number
of components, as most visualisations can only display two-to-three axes.

In contrast to PCA, t-SNE is both slower and does not preserve the global structure
of the data. When operating on large datasets, t-SNE is often run as a second stage
after other dimensionality reduction techniques, such as PCA, though the more recent
Fourier-interpolated (FIt-SNE) implementation provides significant improvements in run
time [31]. t-SNE is sensitive to changes in its own hyperparameters, which in turn must
be selected carefully for each analysis to make sure the visualisation is fit for purpose [29].
Despite its shortcomings, t-SNE has a greater ability to create separation between clusters.
This is especially beneficial for exploratory visualisations, though the fact that it does
not preserve global distances means that the interpretation of visually observed clusters
needs to be conducted carefully as differences in separation between clusters may not
contain any significant meaning. Finally, t-SNE works best when used for visualisation
only, reducing the dimension of the data to two or three at most, which means it is not ideal
for downstream unsupervised clustering as it will only produce clusters that agree with its
visualisation, potentially losing the underlying structure and relation between them due to
the loss of global structure information [32].

Comparatively recent to the other two approaches is UMAP. As in the case of t-
SNE, UMAP is a non-linear technique. However, in addition to creating strong local
clusters, UMAP also attempts to preserve the global structure in the data and has lower
computational time requirements [30]. In terms of single-cell analysis in particular, it is
capable of preserving the continuity of cell subsets, which provides a more meaningful
visualisation compared to t-SNE [33]. UMAP is thus often regarded as an improvement for
most use cases, though t-SNE still shows greater local structure separation and the FIt-SNE
implementation, in particular, has comparable, if not superior, speed.

Dimensionality reduced data are prime for visualisation, as with reduced complexity
they can be more easily projected to a two-dimensional plane. This is a very useful feature,
as a quick visualisation process can be a powerful quality control tool [32]. Due to the
nonlinearity of the most commonly used dimensionality reduction methods, some caution
needs to be exercised for interpreting the graphs produced. For example, a t-SNE based
scatterplot produces exaggerated distances between local groups. From a quality control
perspective, however, it can be very useful to rapidly assess whether or not the data are
behaving as expected, i.e., are the clusters sensible, or whether or not the distribution is as
expected from what is known about the dataset. Should there be a mismatch, it may point
to other issues that need to be corrected first, for example, in the normalisation procedure.

2.3. Clustering

One of the most basic techniques for interpreting transcriptomic data is clustering,
which identifies groups of similar points within the dataset. With the availability of a
variety of different approaches for visualising and analysing transcriptomic data, care
must be taken to select the technique most suitable for enabling insights relevant to the
goal of the study. In transcriptomic data, there are two basic ways to perform clustering,
either on the level of samples and or on the level of genes. Clustering samples is useful for
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identifying samples with similar gene expression levels, while gene clustering identifies
genes with similar expression profiles across samples. Gene clustering is especially helpful
in bulk sequencing experiments using older methods, such as microarrays, where sample
clustering is often limited by low resolution. Sample clustering is especially suitable for
single-cell datasets, for example, for identifying different cell types within a tissue. Two
common clustering methods applied to clustering transcriptomic data are hierarchical
clustering and k-means [34].

Hierarchical clustering is one of the most basic clustering methods available, where
the data are structured into a dendrogram based on a statistical distance metric, such as
Euclidean distance, and the clusters are decided by splitting the dendrogram at a certain
depth. The dendrogram can be constructed by linking each data point together from the
bottom up (agglomerative) or by splitting the complete dataset into smaller subgroups
based on dissimilarity (divisive). While simple to understand, naive hierarchical clustering
algorithms are computationally intensive and are not suitable for larger datasets, for
which heuristics are often employed to speed up the process [35,36]. This technique was
largely used in embryo developmental studies to investigate relationships between different
embryological phases based on their transcriptomic similarity [37–39].

K-means clustering provides a faster algorithm compared to hierarchical clustering, in
which the dataset is split into k cluster centres and assigns each data point to a cluster based
on which cluster centre they are the closest to. Classical k-means clustering is an efficient
technique when the number of clusters to be expected in the dataset is already known [40].
For this reason, it was applied for studying embryo development on a morphological level
by imaging analysis [41], but also on a molecular level [42]. Despite these successes, the
number of clusters of a dataset is not always known a priori and, to overcome this limitation,
a variety of other methods exist [32], including network-based strategies that operate on
graphs of transcriptomic data points constructed using K-nearest neighbour methods [43].
This approach revealed its potential especially in single-cell RNA-seq experiments [44], as
it was able to identify known and new cell groups in different biological contexts, including
embryo development [45] and artificial reproductive treatments [46].

While clustering is a very valuable tool for exploration, it is also often used as a
stepping stone for downstream analysis. For example, annotating the clusters with genes
that are highly expressed can lead to a better identification of what cell types are represented
by the clusters using reference databases of marker genes. The list of expressed genes can
itself be used in gene ontology (GO) enrichment analysis, which provides a way for looking
up gene functions and can then be followed up with network analysis on the pathways and
relations of the expressed genes, as well as overrepresentation analysis to find prevalent
GO terms, which can lead to the identification of overexpressed pathways.

Clustering can also be performed on a gene level instead of a cell level, in which case
genes are clustered based on the similarity of their sequences. This is especially useful for
identifying the functions of novel genes as they may share similarities to known genes [47],
but also for phylogenetic tree reconstruction [48]. It is also possible to group genes based on
known biological processes instead, and then testing for the overrepresentation of certain
processes within the sample.

2.4. Differential Expression Analysis

Differential expression analysis is a basic method for comparing gene expression levels
between samples, and is able to produce useful insight regardless of resolution as long as
there is clear delineation between samples [14]. By finding which genes are expressed at
different levels between samples of different phenotypes, correlations between phenotype
and genotype can be drawn. This idea of comparing the difference in gene expression levels
also forms the foundation of much of the techniques explored in the following sections.
This basic concept of comparing two (or more) groups has guided the latest biological
discoveries in embryology. For example, some studies have tried to establish which genes
guide a competent embryo implantation through in vitro fertilization techniques [49], while
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others have tried to correlate embryo degeneration with specific protein families, such as
the heat shock proteins (HSPs) [50]. Other authors have tried to use well-known animal
models used in embryology, such as Xenopus, to create an atlas of differential expressed
genes during embryogenesis [51] and, finally, other studies have tried to translate these
findings from animal models to human [52].

2.5. Trajectory Analysis

Trajectory analysis methods can be used to characterise datasets containing samples
taken from organism(s) at different points in development [53]. While this is simple
for experimental techniques that allow for multiple measurements on the same sample
over time, it is impossible in single-cell experiments as the samples are destroyed upon
sequencing. For the latter case, the concept of pseudotime is often employed, where
the trajectory is constructed over various samples, instead of reflecting a real time series.
Trajectory analysis is closely linked to the concept of a “developmental landscape”, in
which cell populations roll down a landscape representing the entropy of their current
state, heading towards their terminally differentiated fate [54]. As cells form a continuous
lineage as they traverse through this landscape, the trajectory of cell development can
be inferred by comparing the data taken from two different points. This comparison is
typically performed by representing a cell’s gene expression profile as a vector, which
allows for distances between them to be calculated. A range of approaches and packages
are available for this purpose [55–57].

A recent technique referred to as RNA velocity analysis provides a novel approach
to trajectory inference from a single snapshot in time. The technique utilises the ratio
of unspliced to spliced messenger RNA (mRNA) to quantify the rate of change in gene
expression and fill in the gaps between pseudotime slices [58,59]. Bridging these gaps can
be very useful as some trajectory inference methods only work under the assumption that
there is only a small difference between the different states [56]. Similarly to RNA velocity
analysis, partition-based graph abstraction (PAGA) aims to detect trajectories from a single
snapshot; however, it does this by connecting similar cells to each other in a network [60].
This allows to combine trajectory inference with other methods, such as clustering for the
same data. Inferring transcriptomic trajectories in embryological datasets corresponds to
the identification of developmental trajectories, which map cell state evolution over time.
This is very important to try to understand biological events that occur in a very small
window of time, such as the periconceptional period. Studies in mice have revealed the
key genes whose transcriptomic changes lead to differentiation and organogenesis [45,61].
Similar studies in zebrafish have looked at a larger time window and contextualised the
impact of some gene knockouts on cell fates [62].

2.6. Expressed Variation Analysis

Transcriptomic data can also aid in the identification of relevant genetic variations, in
particular expressed single nucleotide variations (eSNVs) [63–65]. Compared to genome-
wide association studies (GWAS) [66], these methods do not rely on having a large sample
population. By operating at a much more granular single-cell resolution, they allow for
detecting variations that are not present in significant numbers within a sample population.
These traits enable the application of variant analysis on a smaller scale, such as separating
cells from different individuals [67] and cancer identification [68,69]. When applied at
the population level, it is also possible to define expression quantitative trait loci (eQTL),
genetic variations that cause changes in expression levels [70], for example, using data
collected in the Genotype-Tissue Expression (GTEx) project [71].

In conjunction with trajectory analysis, variation data can reveal further information.
It has been shown that SNVs, both expressed and not, affect not only a gene’s transcription
level, but its changes at different points in development, suggesting complex interactions
with underlying regulatory mechanisms within the genome [72,73]. eSNVs are particularly
important in this context as these expressed variants implicate phenotypic effects [74]. Simi-
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larly, it is also possible to compare the variations present in different stages of development
to analyse the rate at which mutations are accrued at different stages, such as in studying
the mosaicism present in human prenatal development [75].

3. Epigenetic View of Development and Analysis

The term epigenome refers to all modifications to DNA and histone proteins that
modulate chromatin structure and genome function [76]. The epigenome thus represents a
crucial nexus between genetic variation, environment, health, and disease. Indeed, chemical
compounds, such as environmental exposures, can cause (ir)reversible changes in DNA
structure, such as chromatin unfolding, which allows transcription factors (TFs) to bind
their target leading to an increased transcription of the genes localised in the respective
DNA region. Another example showing the importance of epigenetics is the variability of
cell states within the same individual. While all cells in an organism share the same genetic
information, they differ largely in terms of their expression and phenotypic manifestations.
Epigenomic and transcriptomic data thus convey two different types of information, but
can also be seen as two sides of the same coin. Integrating these two sides into a single
framework remains an important and challenging task in the biomedical field [77–79].

Epigenetic mechanisms have gained growing attention from the scientific community
in recent decades. In contrast to genetic mutations, epigenetic changes are plastic events
that may occur multiple times during the lifetime of a cell and that can be reversible. These
mechanisms are involved in numerous pathological processes [80–82] and therapeutic
outcomes [83]. In the following, we review major biological processes that collectively
constitute the epigenome (Figure 3).
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Figure 3. Epigenetic modifications occur on different biological scales. DNA-based mechanisms
are concerned with histone modifications, consisting of chemical modifications (i.e., acetylation),
DNA methylation, chromatin remodelling, and transposons. RNA-based mechanisms are multiple,
complex, and still only partially known: miRNA and the RISC complex can induce mRNA degra-
dation; lncRNAs silence the activity of miRNA, while snRNA and tsRNA can both silence, but also
induce, mRNA translation to protein. piRNAs can interact with DNA, interfering with the genetic
movements of transposons; snoRNAs induce chemical modifications at the mRNA level.
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3.1. DNA Methylation

DNA methylation is among the most studied and best understood epigenetic mech-
anisms. It contributes to gene expression regulation via an enzymatic reaction in which
DNA methyltransferase (DNMT) catalyses the addition of a methyl group (-CH3) to a cyto-
sine [84], causing DNA folding and the consequent inaccessibility by TFs, in turn silencing
gene transcription in that particular region of DNA. In mammals, this process occurs only
in dinucleotides CpG and is associated with gene inactivation [85,86]. Interestingly, each
tissue seems to have a specific pattern of DNA methylation [87] that potentially changes
over time, asserting the dynamic nature of this biological process [88,89] that can contribute
to disease onset [90]. These dynamic methylation profile changes (epigenetic drift) con-
tribute to cellular differentiation and tissue composition [91] and have been associated with
development [92], ageing [93], and disease [94].

3.2. Non-Coding RNAs (ncRNAs)

The central dogma of molecular biology describes the flow of information from DNA
to mRNA and finally to protein. Over the last decades, many additional mechanisms
have been uncovered that can regulate and interfere with this linear process. Some of the
main actors in this regulation are non-coding RNAs, which have been shown to regulate
processes such as transcription, translation, and post-translational events [95,96]. There is a
large variety of molecules that belong to this class and, surprisingly, some of them have
been observed to be inheritable across generations [97,98]. They are often roughly classified
based on their length into small (<200 nucleotides) and long (>200 nucleotides) non-coding
RNAs. They can further be subdivided as follows:

siRNAs (small interfering RNAs) are very short sequences of RNA that are able to
silence mRNA targets [99]. This phenomenon was first described in plants, fungi, and
animals as RNA interference [100]. SiRNAs are generated from cutting long double-strand
RNA (dsRNA), which can be generated from long hairpin RNA, genes, or pseudogenes.
This process is executed by the biological machinery DICER.

snRNAs (small nuclear RNAs) are responsible for mRNA maturation [101] and par-
ticipate in various fundamental biological mechanisms, such as splicing [102], TFs regula-
tion [103], and the maintenance of telomeres [104].

SnoRNAs (small nucleolar RNA) are involved in chemical RNA modifications, such as
methylation and pseudouridylation. The purpose and outcome of these modifications are
still largely unknown, despite occurring in conserved regions of RNAs across species [105],
as documented in recent databases that include information from seven different organ-
isms [106], and integrate interaction information [107].

tsRNAs (transfer RNA derived small RNAs) are the most variable class of small non-
coding RNA, having a repertoire of up to 150 modifications for each molecule [108]. Having
been present since ancestral periods, they acquired different biological functions, ranging
from bacterial development and viral infections to signalling molecules related to ageing,
immunity, and disease [109]. Due to their cytoplasmic location and interaction with DICER,
tsRNAs are regularly mis-annotated as miRNA [110], increasing the difficulties to fully
understand their specific biological functions.

piRNAs (Piwi RNAs) are the largest class of small non-coding RNA molecules ex-
pressed in animal cells [111]. They are important to form protein complexes that silence
transposons and other repetitive elements of the genome [112]. Estimates indicate that
hundreds of thousands of different molecules belong to this class in mammals [113].

microRNAs (miRNAs) regulate gene expression by binding to mRNAs, thus suppress-
ing their translation [114]. First described as early as 1993 [115], their basic mechanism of
action has been known for some decades [116]. Still, many important questions remain
unsolved [117], for example, how co-regulating miRNAs simultaneously regulate their
target genes in different biological contexts.

Long non-coding RNAs (lncRNA) are RNAs with lengths exceeding 200 nucleotides
and that are not translated into proteins. They have been implicated in many genomic
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processes, including parent-of-origin effects, alternative splicing, and tissue-specific gene
expression [118,119]. In cancer, they have been observed to be particularly enriched for
cis-expression quantitative trait loci (eQTL), which are often associated with genes reg-
ulating drug sensitivity [120]. LncRNAs are also associated with chromatin-modifying
complexes [121] and histone methyltransferases [122].

3.3. Transposons

Transposons are regions of DNA that are repeated multiple times. They are also called
“mobile elements” since they can change their position within the genome. They can be
classified based on their mechanism of replication: Class I transposons, or retrotransposons,
use a reverse transcriptase; and Class II transposons encode the protein transposase. Trans-
posons play a major role in the diversification and evolution of the genome of different
species, as well as individuals [123]. There are epigenetic mechanisms for avoiding unbal-
ance in their transcription, for example, via methylation or zinc protein regulation [124].
However, despite their unpredictable jumps across the genome that may interrupt gene
sequence and cause shifting mutations, certain diseases have shown specific associations
with transposons, such as haemophilia [125] and Alzheimer’s disease [126].

3.4. Chromatin Modifications

With an estimated length of around 3 m [127], the DNA must be carefully folded to fit
inside a cell. Together with histone proteins which aid in this process [128], it forms the
chromatin complex. Chromatin is an extremely dynamic entity, whose changes lead to open
or closed regions of the DNA, which in turn directly affects gene transcription. Chromatin
modification is a set of epigenetic processes that govern many aspects of DNA replication,
transcription, and repair. In eukaryotes, the basic unit of chromatin, the nucleosome, is
comprised of 147 bp of DNA wrapped around a histone octamer made of two dimers
of H2A and H2B and a tetramer of H3 and H4 proteins [129]. The interaction between
DNA and histones occurs at the amino-terminal (N-terminal) tail of histone proteins and,
for this reason, chemical modifications here, such as (de-) acetylation, phosphorylation
and methylation, would change chromatin conformation, influencing various biological
processes [130]. It is known that histone modifications are related to inheritance from
mother to daughter cell and that this is influenced also by the environment, but the exact
steps how this phenomenon occurs is still to be understood. These processes are crucial
in development [131] and disease onset [132], but systematic large-scale studies remain
scarce [133,134].

4. Network Models of the Epigenome

In light of the diversity of the biological mechanisms outlined above, it is clear that no
isolated process or particular dataset alone will be able to provide a comprehensive picture
of the developmental origins of health and disease. Indeed, after decades of biological
research following a reductionist paradigm, a more holistic, systems-based framework is
required [135]. Network theory can provide such a framework [136]. Networks are a gen-
eral mathematical formalism for representing relationships (links) between objects (nodes).
Important examples in biology and medicine range from protein–protein interaction (PPI)
networks representing physical interactions between proteins [137] or gene regulatory
networks representing transcription factors binding to DNA [138], to signalling networks
of immune cells [139] or networks of organs linked by metabolism [140]. More generally
speaking, we can distinguish between physical networks, where the links represent a
direct physical relationship (e.g., protein interactions) and functional networks, where links
represent indirect relationships (e.g., co-expression networks) [141] (Figure 4A).
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Figure 4. Biological networks and their topological characteristics. (A) Classification of biological
networks in two major categories: physical and functional interactions. The first category includes
the protein–protein interaction network (interactome), which represents the map of the physical
interactions of all proteins and the neural network (connectome), which shows synapses that connects
neurons. Networks that are constituted by functional interactions have edges that represents func-
tional relationships, such as the level of expression (co-expression network) or the gene regulation
(gene regulatory network). (B) The most important features of a network are hub (a node connected
to many others), motif (recurrent structures in different parts of the network), and community (group
of densely interconnected nodes).

The abstraction of the complex biological machinery in terms of networks allows us to
systematically investigate both global and local connection patterns and their respective
biological implications [142]. For example, highly connected nodes (hubs) in PPI networks
typically correspond to proteins with multiple biological functions. These proteins have
been shown to be more likely essential [143,144], so that network analyses can help to
identify the crucial genes involved in particular biological mechanisms [145]. Similarly,
groups of densely interconnected nodes (network communities) and recurrent structures
in different parts of the network (network motifs) have been shown to correspond to
genes participating in the same biological process and allowed for the identification of
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fundamental building blocks of biological pathways, respectively [146–148] (Figure 4B).
Network communities can also aid in the identification of genes that are involved in a
particular disease and form a so-called disease module [149–151].

4.1. Gene Regulatory Networks (GRNs)

We can observe from the above that the relationship between genome and proteome is
not a simple linear process, but that many factors and feedback mechanisms are involved.
These can be external factors, internal molecules of the organism, and importantly also
interactions among the genes themselves [152]. From a theoretical point of view, we can
define the gene regulatory network as the wiring diagram that controls the collective gene
expression [153]. In the early 1970s, Kauffmann and colleagues provided a first theory for
GRNs [154]. Specifically, they considered Boolean networks and showed that a complex
collective behaviour can emerge from simple logical operators among the individual
components. The introduction of high-throughput technologies enabled the combination
of theory and large-scale data [155–157]. In the last decade, various methods have been
proposed to identify the (generally non-linear) functions that govern gene expression [158].
Today, we can incorporate a plethora of different types of omics data, such as RNA-
seq, ChIP-seq (chromatin immunoprecipitation sequencing for identifying DNA binding
sites), or ATAC-seq (assay for transposase accessible chromatin sequencing to identify
open chromatin regions). This led to a somewhat broader definition of gene regulatory
networks that includes various biological mechanisms that influence gene expression [159],
such as transcriptional regulatory networks [160], protein interactions [161], microRNA
networks [162], and metabolic networks [163].

GRNs can be used to better understand the molecular machinery governing cell
states and to guide new screening experiments [164]. They may identify subnetworks and
pathological pathways that can help to identify network-based biomarkers [165]. Gene
regulatory networks also play an important role in development and ageing. In addition to
dynamic changes over time, interindividual variation also needs to be considered. Methods
that account for this include LIONESS (Linear Interpolation to Obtain Network Estimates
for Single Samples), an approach able to distinguish the individual variability within a
group [166]. This tool is part of a group of algorithms for GRN analysis called netZoo
package [167] that also provides functionalities for investigating tissue specificity or multi-
omic data integration.

4.2. Network Approaches for Interpreting DNA Methylation Profiles

Dynamic changes in methylation profiles (epigenetic drift) have been mapped on PPI
networks, showing that mainly peripheral genes with low connectivity values are affected
that fall into a number of connected network communities [168]. This enabled the iden-
tification of age-associated hot spots in stem-cell differentiation pathways [168]. Despite
these successes, the mechanisms by which different methylated CpG regions influence
remain poorly understood. To address this, the concept of Functional Epigenetic Modules
(FEM) was proposed to identify gene modules of coordinated differential methylation and
differential expression in the context of the human interactome [169].

To better understand how methylated genes are influencing each other, correlations
between the demethylation status of a pair of genes can be considered. Computing all
possible DNA methylation status comparisons leads to the so-called Co-occurrence and
Mutual Exclusivity (COME), a table specifying for each gene pair whether their methylation
status co-occurred or is mutually exclusive. This procedure was recently applied in cancer
research using 14 main cancer types from The Cancer Genome Atlas (TCGA) [170], reveal-
ing a new way to stratify patients distinguishing several classes with distinct epigenetic
trademarks that correspond to distinct clinical outcomes [171].

Similarly, DNA methylation correlation profiles were used to build a co-expression
network (DNA methylation interaction network) in ovarian cancer, breast cancer, and
glioblastoma multiforme, predicting new common prognostic genes [172]. Recently, the
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integration of differentially methylated genes and differentially expressed genes was used
to identify new biomarkers in leukaemia [173]. Another approach for methylation and
expression profile integration consisted of a multi-layer network approach called “Epige-
netic Module based on Differential Networks (EMDN)”. The method first builds separate
co-expression co-methylation networks. Then, the modules of densely connected node
groups that are shared between the two are identified. The results indicate the potential of
this procedure for finding new disease-associated genes in breast cancer [174].

Another challenge in the area of DNA methylation is to integrate large-scale popu-
lation studies [175,176]. Similar to GWAS, which have been extensively used to find new
genomic variants associated with specific phenotypes [177], epigenome-wide association
studies (EWAS) have also been proposed to help to discover new aberrantly methylated
genes [178]. In this context, a network-based algorithm (NEpiC) was proposed for com-
bining methylation profiles from EWAS and PPI modularity. For each gene, the algorithm
computes a score to identify differentially methylated genes that are then mapped on the
PPI. Then, the modularity of these genes is evaluated and a prioritisation algorithm based
on the connectivity is applied [179].

To encourage the usage of these and other tools and discoveries in a clinical setting
and by people without highly specialised bioinformatics training, a number of user-friendly
platforms have been recently developed. A prominent example is DNMIVD [180], an
interactive DNA methylation visualisation resource providing information regarding DNA
methylation-based diagnostic and prognostic models based on different cancer types
from TCGA, expression-methylation quantitative trait loci (emQTL), pathway activity-
methylation quantitative trait loci (pathway-meQTL), differentially variable and differen-
tially methylated CpGs, survival analysis, and FEMs (from PPI and COMEs) [181].

4.3. Modelling Non-Coding RNA Interactions

As introduced above, many epigenetic molecules belong to the wide category of
non-coding RNAs. For many non-coding RNAs, little is known about their biological
activity or interactions with other biomolecules. The most information is available for
miRNAs, with over 2000 miRNAs discovered in humans, many of which are associated
with diseases [182,183]. Accordingly, miRNAs have also been the focus of network-based
studies, although the general methodologies are likely to be applicable to all classes of
non-coding RNAs.

An important challenge is to identify elements that jointly regulate their target genes
in different biological contexts. For miRNAs, a solution has been proposed that starts from
creating a network in which two miRNAs are connected when they share a significant
number of gene targets, as determined by sequence complementarity and co-expression
patterns [184]. The Molecular COmplex DEtection algorithm (MCODE) was then used
to identify 12 different miRNA modules in this network. The cooperativity of miRNAs
within a module was evaluated by their shared TFs and the functional similarity of their
target genes. Similarly, synergistic miRNA-miRNA networks have been proposed, in
which connections are based on common targets with similar biological functions and close
proximity in the PPI network [185]. It was shown that disease associated miRNAs are
located at central positions in the resulting network and that miRNAs associated with the
same disease tend to form connected clusters [186].

Network science also provides an arsenal of tools for finding new miRNA–diseases
associations [187]. For example, one can construct a bipartite network in which miRNAs
are connected to diseases based on their reported associations. New miRNA–disease
associations can then be predicted using a combined score that takes functional similarity
among miRNAs into account, as well as similarity among diseases [188]. These predictions
can be further improved by including network topology features, such as neighbour
similarities and network distance [189]. In this fashion, new functional annotations and
similarities between miRNA pairs were discovered in the context of prostate cancer [190].
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Another important class of non-coding RNAs are lncRNAs. One of the first attempts
to study the biological functions of lncRNA in a large-scale fashion was presented in [191].
In that study, the authors built a coding–non-coding gene (CNC) co-expression network
for predicting the biological role of 340 lncRNAs. The function of a particular lncRNA was
inferred based on patterns of co-expression and genomic co-location, using the gene ontol-
ogy annotations of the coding genes in its immediate neighbourhood in the CNC network.
The concept of predicting biological functions based on the interactions between lncRNAs
and proteins has further been applied using a random walk with a restart algorithm on a
lncRNA–protein interaction network [192].

Despite many promising initial results, the predictive power of these methods remains
limited. One reason for this is likely that they rely on a direct link between non-coding
elements and coding genes, for which data are scarce. This can be mitigated by considering
additional datasets, for example, phenotypic similarities [193]. Similarly, the focus on a
single class of biomolecules is often a limitation. Indeed, many lncRNAs have been shown
to interact with other non-coding elements, such as miRNA [194]. An approach using a
combined lncRNA–miRNA–mRNA interaction network found that predictions based on
all three data performed better than using only lncRNA–protein interactions and can be
used to identify clinical biomarkers in the context of breast cancer [195]. Along the same
lines, the integration of pre- and post-transcriptional information into a lncRNA functional
similarity score was used to predict disease associations [196]. These approaches were later
expanded to include both human and mouse data [197,198].

4.4. Network Approaches for Chromatin Modifications and Transposons

To date, more than a hundred enzyme complexes, grouped in at least eight different
classes, are known to catalyse enzymatic reactions in histones and cause changes in the
DNA structure [199]. A collection of manually curated genes–diseases associations related
to chromatin modifications is available from [200,201]. These resources can also be used
to construct networks for elucidating the relationship between chromatin modifications
and disease [202]. For example, the conformational state of chromatin was shown to be
responsible for the switching to an inflammatory phenotype in macrophages and that
the underlying mechanism that regulates this process is governed by a transcriptional
regulator network [203]. While only a few network studies have been performed in this
area of epigenetic regulation, the growing amount of related genes–disease annotation
opens up new doors for systematic investigations [204]. The potential of investigating
genetic mobile elements was touched only on the surface and it could unravel many open
biological questions. For example, Levy et al. have developed a computational framework
that is able to identify retrotransposons playing a key role in species evolution [205].

5. Towards an Integrative Analysis across Biological Hierarchies

Several of the examples above showed the potential of combining different data
sources and corresponding biological mechanisms. The ultimate goal, of course, is to inte-
grate all relevant layers of biological information into a single comprehensive picture [206].
Indeed, no single dataset can capture the complex and high-dimensional nature of the
biological processes involved in health and disease [207]. The integration of data from
various sources poses both technical and conceptual challenges [208]. In the following, we
highlight recent developments in this area, with a particular focus on examples that involve
the various mechanisms introduced above.

From a data science perspective, data integration can often be boiled down to finding
correlations and corresponding trends between different datasets. A basic way to achieve
this is through a particular type of matrix operations, so called matrix factorisation, which
provides a dimensionality-reduced model of the relation between features in different
data. A widely used method for this is joint non-negative matrix factorisation. While
simple to implement, being based only on matrix multiplication, it requires large amounts
of computing resources and proper care needs to be taken during normalisation. More



Genes 2022, 13, 764 15 of 28

advanced variations of this technique that pose less restrictions on the data that can be
used include the iCluster package [209].

There are also network-based methods for data integration. These methods build
on the fact that many biological processes have a direct network representation, but also
on the interpretation of networks as a visual and abstract representation of data matrices,
allowing an intuitive, but also formal, approach to biological data analysis. For example,
MpDisNet is a network-based methodology for identifying disease–disease relationships
by integrating four different biological networks: disease–miRNA network, miRNA–gene
network, disease–gene network, and the human interactome [210]. The methodology
revealed that comorbidities for pulmonary diseases were driven by miRNA-mediated
pathobiological pathways. It thus identified a new type of disease–disease relationship that
filled a gap between genome and phenotype using miRNA data as a bridge.

Another approach for integrating different types of biomolecules uses cooperative net-
works, in which the different components contribute to a common goal. This concept was
applied in cancer research to elucidate the mechanisms responsible for the upregulation
of oncogenes [211]. Here, different components contribute to the cancerogenic pheno-
type: chromatin opening, the recognition of the gene-specific DNA motif, the creation
of a scaffold between histones, and the constitution of the transcriptional complex. The
method involves several types of enrichment analysis to obtain a prioritisation of the key
elements that regulate each epigenetic step of transcription regulation. For example, motif
enrichment was used to determine which transcription factor motifs are significant for
certain promoters, while the transcription factor target analysis defined the transcription
factors that govern a set of target genes.

Network-based data integration has been successfully applied not only in oncology,
but also in other medical fields. In virology, for example, genetic–epigenetic interactions
were used in a cross-species integration between Epstein–Barr virus and human cells [212].
The resulting network was obtained by merging PPIs, gene–miRNA interactions, gene–
lncRNA interactions, and host–virus cross talk networks. This allows for the identification
of dynamic epigenetic patterns, suggesting an initial epigenetic inhibition by viral proteins
that results in an immune response dysregulation of the host. The analysis further uncov-
ered the most active viral proteins and miRNAs responsible for resistance mechanisms
against the host’s defence. In cardiology, analogous methods were used to distinguish dif-
ferent heart failure phenotypes, proposing the “EPi-transgeneratIonal network mOdeling
for STratificatiOn of heaRt Morbidity” (EPIKO-STORM) [80].

While this review mainly focuses on network approaches to integrative analysis, other
methods for data integration are also of interest. An approach that is currently undergoing
rapid development is the use of machine learning. This computational approach is based
on the capability of the algorithm to identify patterns from a part of the dataset (training
set) that is used to learn fundamental characteristics of the shape of the data that can be
used for classification and integration tasks [213]. Such an approach is able to integrate data
beyond transcriptomic and epigenomic data, having been applied to other omic data types,
such as genomic, proteomic, and metabolomic data [214,215]. As such, machine learning
presents itself as a promising approach to integration, though having the limitation that the
training dataset should be large enough to contain all the representative features of the real
dataset, which is not always the case [216].

In conclusion, using these integrative approaches in a plethora of transcriptomic
(Table 1) and epigenetic data (Table 2) can help to understand the pathophysiological
mechanisms behind common conditions of the periconceptional period and pregnancy, such
as placenta percreta [217], pre-eclampsia [218], and the pregnancy-induced hypertension
syndrome [219].
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Table 1. Published transcriptomic datasets within the context of early human development.

Techniques Sample Type Number of Genes/Cells Goals Study

HG-U133 Plus 2.0 array
(Affymetrix) Oocytes 1361 transcripts expressed in

oocytes
Study of oocyte
transcriptomes [220]

HG-U133 Plus 2.0 array
(Affymetrix) Oocytes 1514 overexpressed in oocytes

compared with cumulus cells

Understanding of the
mechanisms regulating
oocyte maturation

[221]

HG-U133 Plus 2.0 array
(Affymetrix) Oocytes

5331 transcripts enriched in
metaphase II oocytes relative
to somatic cells

Comprehension of genes
expressed in in vivo
matured oocytes

[222]

HG-U133 Plus 2.0 array
(Affymetrix) Oocytes 10,183 genes were expressed in

germinal vesicle

Study of global gene
expression in human
oocytes at the later stages
of folliculogenesis
(germinal vesicle stage)

[223]

HG-U133 Plus 2.0 array
(Affymetrix) Oocytes

Of the 8123 transcripts
expressed in the oocytes,
374 genes showed significant
differences in mRNA
abundance in PCOS oocytes

Understanding of PCOS [224]

HG-U133 Plus 2.0 array
(Affymetrix) Oocytes

Identification of new
potential regulators and
marker genes that are
involved in oocyte
maturation

[225]

HG-U133 Plus 2.0 array
(Affymetrix) Oocytes 283 genes found in the case

report sample

Identification of molecular
abnormalities in
metaphase II (MII) oocytes

[226]

Whole Genome Bioarrays
printed with 54,840
discovery probes
representing 18,055 human
genes and an additional
29,378 human expressed
sequence tags (EST)

Oocytes

2000 genes were identified as
expressed at more than 2-fold
higher levels in oocytes
matured in vitro than those
matured in vivo

Analysis of the gene
expression profile of
oocytes following in vivo
or in vitro maturation

[227]

Applied Biosystems
Human Genome Survey
Microarray (32,878 60-mer
oligonucleotide)

Oocytes

Germinal vesicle, in vivo-MII
and IVM-MII oocytes
expressed 12,219, 9735 and
8510 genes, respectively

Characterisation of the
patterns of gene expression
in germinal vesicle stage
and meiosis II oocytes
matured in vitro or in vivo

[228]

HG-U133 Plus 2.0 array
(Affymetrix) Oocytes

342 genes showed a
significantly different
expression level between the
two age groups (women aged
36 years (younger) and women
aged 37–39 years (older))

Investigation of the effect
of age on gene expression
profile in mature oocytes

[229]

Two cDNA microarrays,
each containing about
20,000 targets (representing
in total ~29,778
independent genes
according to Unigene
Build 155)

Oocytes and
embryos

1896 significant changes in
expression following
fertilization through day 3 of
development

Global analysis of the
preimplantation embryo
transcriptome

[230]
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Table 1. Cont.

Techniques Sample Type Number of Genes/Cells Goals Study

cDNA microarrays
containing 9600 cDNA
spots

Oocytes and
embryos

184, 29 and 65 genes were
overexpressed in oocytes, 4-
and 8-cell embryos,
respectively

Identification of the
differential expression
profiles of genes in single
oocytes, 4- and 8-cell
preimplantation embryos

[231]

Genome Survey
Microarrays V2.0 (Applied
Biosystems)

Oocytes and
embryos

107 DNA repair genes were
detected in oocytes

Identification of the DNA
repair pathways that may
be active pre- and
post-embryonic genome
activation by investigating
mRNA in human in vitro
matured oocytes and
blastocysts

[232]

HG-U133 Plus 2.0 array
(Affymetrix)

Oocytes and
embryos

5477 transcripts differentially
expressed into transition from
mature oocyte (MII) to 2-day
embryo and 2989 transcripts
differentially expressed into
transition from 2-day to 3-day
embryo

Study of global gene
expression in human
preimplantation
development

[233]

HG-U133 Plus 2.0 array
(Affymetrix)

Oocytes and
embryos

45 eukaryotic initiation factors,
19 of which are differentially
regulated between the 8-cell
stage and blastocyst

Identification of gene
networks behind cell fate
decision in blastomeres

[234]

Illumina HiSeq2000
unpaired (TrueSeq)

Oocytes, embryos,
and hESCs

124 single cells, 90 from
20 oocytes and embryos, 8
from primary hESC outgrowth,
26 from hESC passage 10,
averaging 35.3 million reads
per cell, average read length
100 bp. 22,687 maternally
expressed genes detected,
including 8701 lncRNAs, 2733
of them novel and
developmental stage specific

Comparing the gene
expression of human
epiblast in vitro with
hESCs

[235]

Illumina HiSeq2000
paired-end (TrueSeq) Embryos 86 single cells

Validating known marker
genes and highlighting
differences between human
and mouse
pre-implantation
development

[236]

Illumina HiSeq2000
single-end (Smart-seq2) Embryos

1529 single cells from
88 embryos of various
developmental stages,
averaging 8500 expressed
genes

Showcasing the
differentiation of cell
lineage in pre-implantation
embryos and
X-chromosome dosage
compensation in females

[237]

Illumina HiSeq4000
paired-end (STRT-Seq and
Trio-seq2)

Embryos
7636 single cells from
65 pre/post implantation
embryos

Observation of genome
regulation surrounding
implantation

[238]
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Table 2. Resources containing epigenic data.

Name Type of Data URLs Description Reference

National Institutes of
Health Roadmap
Epigenome Project

• DNA methylation
• Histone modifications
• Chromatin accessibility
• Small RNA-seq

www.
roadmapepigenomics.org
(accessed on 3 March 2022)

The consortium provides
an analysis of stem cells
and primary ex vivo
tissues to collect normal
epigenomes to provide a
reference for comparison
and integration in future
studies.

[217]

ENCODE
(Encyclopedia of
DNA Elements
Project)

• DNA binding
• DNA accessibility
• DNA methylation
• Three-dimensional

chromatin structure
• Replication timing
• Genotyping
• snATAC-seq
• DNA sequencing

https://www.
encodeproject.org/
(accessed on 3 March 2022)

The consortium built a
comprehensive parts list of
functional elements in the
human genome, including
all the regulatory elements
in different biological
levels of complexity.

[218]

Human Epigenome
Consortium

• Histone modifications
• Chromatin accessibility
• Methylome
• Whole genome

sequencing
• TF-binding sites

https://epigenomesportal.
ca/ihec/ (accessed on
3 March 2022)

Large collection of studies
containing human
epigenome and
transcriptome grouped by
tissue and cell type.

[219]

Histone Infobase
(HIstome)

• Histone modifications
http://www.iiserpune.ac.
in/~coee/histome/
(accessed on 3 March 2022)

Database covering
5 different types of
histones, 8 types of their
post-translational
modification and 13 classes
of modifying enzymes

[220]

DeepBlue

• DNA methylation
• Histone modifications

and variants
• DNasel
• Transcription factors

binding sites
• Chromatin accessibility

https://deepblue.mpi-inf.
mpg.de/ (accessed on
3 March 2022)

This source provides a
great effort for integrating
different databases and
sources and obtaining a
large comprehensive
epigenomic consultable
tool (via web interface or
API interface)

[221]

MethBase
• Methylome from

different organisms
http://smithlabresearch.
org/software/methbase/
(accessed on 3 March 2022)

For each methylome, they
provide methylation level
at individual sites, regions
of allele specific
methylation, hypo- or
hyper-methylated regions,
partially methylated
regions, metadata
and statistics.

[222]

iMETHYL

• Methylome
• Whole genome

sequencing

http://imethyl.iwate-
megabank.org/ (accessed
on 3 March 2022)

They provide a
multi-omics data centering
source for DNA
methylation, also including
information about
cell types.

[223]

www.roadmapepigenomics.org
www.roadmapepigenomics.org
https://www.encodeproject.org/
https://www.encodeproject.org/
https://epigenomesportal.ca/ihec/
https://epigenomesportal.ca/ihec/
http://www.iiserpune.ac.in/~coee/histome/
http://www.iiserpune.ac.in/~coee/histome/
https://deepblue.mpi-inf.mpg.de/
https://deepblue.mpi-inf.mpg.de/
http://smithlabresearch.org/software/methbase/
http://smithlabresearch.org/software/methbase/
http://imethyl.iwate-megabank.org/
http://imethyl.iwate-megabank.org/


Genes 2022, 13, 764 19 of 28

Table 2. Cont.

Name Type of Data URLs Description Reference

NONCODE • lncRNA
http://www.noncode.org/
index.php (accessed on
3 March 2022)

This database comprises
lncRNA from different
organisms in health
and disease.

[224]

miRBase • miRNA
https:
//www.mirbase.org/
(accessed on 3 March 2022)

This is a searchable
database of published
miRNA sequences and
annotations.

[225]

PolymiRTS
Database 3.0

• miRNA
https://compbio.uthsc.
edu/miRSNP/ (accessed
on 3 March 2022)

Database containing
miRNAs biological
annotations, relationships
with disease states and
gene expression and their
polymorphisms, variants
and mutations.

[226]

snOPY • snoRNA
http://snoopy.med.
miyazaki-u.ac.jp/
(accessed on 3 March 2022)

They provide a list of
snoRNAs, snoRNA locus,
target RNAs and orthologs
for 39 different organisms.

[90]

snoDB • snoRNA
http://scottgroup.med.
usherbrooke.ca/snoDB/
(accessed on 3 March 2022)

It harmonises human
snoRNAs information from
different sources, such as
sequence databases and
target information.

[91]

RMBase v2.0
• RNA modification

peaks and sites
http://rna.sysu.edu.cn/
rmbase/ (accessed on
3 March 2022)

This database provides an
important source for all the
possible RNA
modifications, including
miRNA, snRNAs and
snoRNAs.

[227]

mQTLdb
• Methylome
• Genotype profiling

http://www.mqtldb.org/
(accessed on 3 March 2022)

They provide methylation
and genotype data on
mother–child pairs
providing access to meQTL
mapping across five
different stages of life.

[228]

Methylomic
trajectories across
fetal brain
development

• Methylome
https://epigenetics.essex.
ac.uk/fetalbrain/
(accessed on 3 March 2022)

DNA methylation across
fetal brain development. [229]

Methylation
quantitative trait loci
(mQTL) in the
developing human
brain and their
enrichment in
genomic regions
associated with
schizophrenia

• Methylation
quantitative trait loci

https://epigenetics.essex.
ac.uk/mQTL/ (accessed
on 3 March 2022)

DNA methylation
quantitative trait loci of
human fetal brain.

[230]

6. Conclusions

Multi-omics data are becoming more and more prevalent. Even nowadays, there is a
massive amount of transcriptomic data as well as a growing amount of diverse epigenetics
data publicly available to the community. These data represent a treasure trove for the
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https://www.mirbase.org/
https://www.mirbase.org/
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community, aiming to unravel the developmental origins of health and disease. Mining
these data requires approaches for their systematic integration and interpretation. Network-
based methods are particularly promising for these purposes. We hope that the examples
highlighted in this review may serve as an inspiration and motivation for this exciting
area of research, showing that integrative analysis enables insights that are not accessible
from any one dataset or biological process alone. In the future, the scale and diversity of
relevant dataset will only grow, enabling, for example, to connect molecular data with
epidemiological findings. The insights that could be gleaned from such datasets have
potential to impact large scale populations, and to help in the prevention, prediction of
disease onset and intervention.
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