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Integrating personalized gene expression profiles into
predictive disease-associated gene pools
Jörg Menche 1,2,3, Emre Guney 1,4, Amitabh Sharma1,4,5, Patrick J. Branigan6, Matthew J. Loza6, Frédéric Baribaud6,
Radu Dobrin6 and Albert-László Barabási1,2,4,5

Gene expression data are routinely used to identify genes that on average exhibit different expression levels between a case and a
control group. Yet, very few of such differentially expressed genes are detectably perturbed in individual patients. Here, we develop
a framework to construct personalized perturbation profiles for individual subjects, identifying the set of genes that are significantly
perturbed in each individual. This allows us to characterize the heterogeneity of the molecular manifestations of complex diseases
by quantifying the expression-level similarities and differences among patients with the same phenotype. We show that despite the
high heterogeneity of the individual perturbation profiles, patients with asthma, Parkinson and Huntington’s disease share a
broadpool of sporadically disease-associated genes, and that individuals with statistically significant overlap with this pool have a
80–100% chance of being diagnosed with the disease. The developed framework opens up the possibility to apply gene expression
data in the context of precision medicine, with important implications for biomarker identification, drug development, diagnosis
and treatment.
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INTRODUCTION
Microarray techniques, and more recently RNA sequencing have
fundamentally changed our ability to explore the molecular
mechanisms underlying complex diseases, being routinely used to
identify disease-associated genome-wide changes in gene expres-
sion patterns. An important goal of these studies is the
identification of differentially expressed (DE) genes, whose
expression level systematically differs between a case (disease)
and a control (healthy) group. The expectation is that such DE
genes will help pinpoint the molecular processes perturbed in a
disease, which in turn can be used as biomarkers for diagnosis and
prognosis,1, 2 patient classification and drug target identification.
For example differential expression patterns of whole blood cells
have long been considered promising candidates for cheap, easily
accessible biomarkers for multiple diseases.3

Despite their extraordinary use in research and medicine, the
interpretation and validation of gene expression patterns con-
tinues to offer major challenges. Indeed, results from similar
studies are often inconsistent, the proposed biomarkers are often
not reproduced, and the identified DE genes rarely point to a
unique set of disease-associated genes.4 For example, a meta
study of multiple heart failure studies failed to identify any gene
that is DE in all seven datasets, the most reproduced gene being
DE only in four datasets5. Two main reasons are often listed as the
source for these inconsistencies: (i) The comparison of different
microarray-based measurements is hindered by important tech-
nical challenges, like the use of different platforms, dyes or
statistical methods. (ii) There is intrinsic variability in gene

expression levels, driven by both genetic factors, like the effect
of single nucleotide polymorphisms and copy number variations
on expression qualitative trait loci (eQTLs),6, 7 and non-genetic
factors,8–11 arising from epigenetic modifications12 and the
inherent stochasticity of biological processes.13–15 Here, we focus
on a third important yet less explored factor: the heterogeneity of
complex diseases, i.e., the possibility that multiple, only partially or
non-overlapping molecular mechanisms can act in different
patients with the same phenotype. For example, breast and
colorectal tumors typically contain about 80 mutated genes.16 Yet,
the mutations in different tumors have very little overlap, so that
in only 22 tumors an astonishing total of more than 1700 mutated
genes has been identified. To date, about 140 “driver genes” have
been identified, whose mutation promotes tumorigenesis in most
cancer types, but only two to eight of these driver genes are
mutated in any individual tumor.17 A similar phenomenon is likely
to occur at the gene expression level: many different perturba-
tions may be associated with the same phenotype. We must
therefore develop bottom-up methodologies that can interpret in
a predictive fashion the inherent heterogeneity of individual
perturbation profiles of both healthy and disease patients.
Here we introduce a framework to construct and integrate

personalized perturbation profiles (PEEPs) from gene expression
data, allowing us to systematically characterize the inherent
heterogeneity of gene expression patterns. We test our approach
on asthma, a chronic inflammatory disease of the lung and
Parkinson’s disease (PD), a progressive disorder of the nervous
system;18 and Huntington’s disease (HD), a neurodegenerative

Received: 27 March 2016 Revised: 29 October 2016 Accepted: 2 December 2016

1Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA 02115, USA; 2Center for Network Science, Central European University,
Budapest 1051, Hungary; 3CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; 4Center for Cancer Systems Biology (CCSB)
and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; 5Department of Medicine, Brigham and Womens Hospital, Harvard Medical School,
Boston, MA 02115, USA and 6Janssen Research & Development Inc., Spring House, PA 19477, USA
Correspondence: Albert-László Barabási (alb@neu.edu)
Jörg Menche and Emre Guney contributed equally to this work.

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

http://orcid.org/0000-0002-1583-6404
http://orcid.org/0000-0002-1583-6404
http://orcid.org/0000-0002-1583-6404
http://orcid.org/0000-0002-1583-6404
http://orcid.org/0000-0002-1583-6404
http://orcid.org/0000-0002-3466-6535
http://orcid.org/0000-0002-3466-6535
http://orcid.org/0000-0002-3466-6535
http://orcid.org/0000-0002-3466-6535
http://orcid.org/0000-0002-3466-6535
http://orcid.org/0000-0002-1583-6404
www.nature.com/npjsba
Joerg Menche




disorder caused by mutations in a single gene (Huntingtin).19 In all
three diseases, we document a high heterogeneity between the
PEEPs of individual patients. We show, however, that using a
combinatorial model, these heterogeneous patterns can be
integrated in a broad, yet highly predictive disease pool specific
for each disease. Our results offer a conceptual change in the way
we interpret disease-associated perturbations, in line with the
emerging disease module hypothesis. Accordingly, disease-
associated mutations perturb some cellular function that at the
molecular level is encoded into a subnetwork of the underlying
interactome. Therefore, multiple, often independent perturbations
can impair the functional integrity of such a module, indicating
that it is intrinsically impossible to associate a single gene or
pathway to a specific pathophenotype.

RESULTS
To illustrate the inherent limitations of group-based differential
expression analysis, consider the POSTN gene, coding for the
protein periostin. Periostin is an established biomarker for
asthma,20–22 its role in airway remodeling being exploited by an
experimental asthma drug.23 The strong differential expression
pattern between asthmatic and healthy subjects confirms its
asthma association (Fig. 1a, fold-change FC = 1.2, p-value <3 × 10−6,

Mann–Whitney U-test). Yet, while this group-wise difference is
very pronounced, we find a more differentiated picture at the
individual level: 25 out 55 asthmatic subjects have relatively low
POSTN expression levels (within one standard deviation of the
mean of the control group) and for 4 out of 25 control subjects,
the POSTN level exceeds the mean level within the asthmatic
group, violating the trend identified by the group-wise analysis.
Overall, for 60% of asthmatic subjects, the expression level of
POSTN is within one standard deviation of the mean of the control
subjects, indicating that genes that show systematic expression
level differences between groups are not up-regulated or down-
regulated in each individual with the phenotype.
To generalize the above observations, we inspected the

expression levels of all genes that were DE according to a
standard group-wise analysis in asthma, PD and HD (see Methods).
As shown in Fig. 1b, 13, 30 and 42% of all case subjects for HD, PD
and asthma, respectively, exhibit an expression level that is
compatible with random expectation for control subjects (within
one standard deviation σ of the mean control level µ).
Furthermore, 6, 7 and 20% of all case subjects have expression
levels that were beyond the control mean in a direction that is the
opposite to the one suggested by the group-wise difference. We
presume that the effect is strongest in asthma due to the larger
population sizes in the respective dataset.

Fig. 1 Personalized gene expression analysis. a Example of the distribution of expression levels for the asthma biomarker POSTN. While the
group-based comparison (FC= 1.2, p-value <3 × 10−6) suggests a global up-regulation of POSTN, many asthmatic individuals exhibit normal or
even down-regulated POSTN levels. b Fraction of case subjects in which genes that are denominated as being DE in a standard group-wise
analysis display normal expression levels, or expression levels that suggest a dysregulation in the opposite direction. The distributions show
the respective fractions over all group-wise DE genes. All whisker bars throughout this manuscript indicate the 5, 25, 50, 75, and 95th
percentiles of the respective distributions. Small numbers within the bars indicate the absolute number of patients that the respective median
fraction corresponds to. c–e Illustration of the proposed approach towards individual perturbation profiles: instead of comparing two groups
of case and control subjects, we compare each case subject individually with the background of control subjects (c). Genes whose expression
level is sufficiently far from the range observed in the control subjects d are denoted as perturbed in the respective individual. Together, the
perturbed genes constitute a personalized, i.e. subject specific “barcode” (e)
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Fig. 2 Heterogeneity among the PEEPs. a Distribution of the fraction of all PEEPs in which a gene appears that has been identified in a
standard group-wise analysis (for asthma). b Fraction all group-wise DE genes found in the PEEPs for asthma patients. c, d Pairwise overlap of
the genes in the PEEPs as measured by the Jaccard index (c) and the number of common genes (d). e Fraction of all case subject pairs whose
gene overlap is statistically significant (Fishers’s exact test, p-value <0.05). f Distribution of the fraction of asthma patient PEEPs in which a
gene appears
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A framework for personalized gene-expression analysis
We can overcome the limitation of group-wise methods that only
detect mean changes between two groups and turn individual
expression heterogeneity into a predictive information by
constructing personalized perturbation profiles that reflect expres-
sion changes within a single subject (Fig. 1c). For each gene i of
subject j, we compare the expression level lji to the reference
distribution of expression levels of that gene within the control
group (Fig. 1d). The deviation is measured by the z-score

zji ¼
lji " hliicont
σcontðliÞ

;

capturing how many standard deviations σcontðliÞ the individual
expression level lji deviates from the mean value hliicont of the
control group. We then use a threshold zthresh to identify the
genes that are sufficiently perturbed in an individual subject. The
resulting individual perturbation expression profile (PEEP) of a
subject can be viewed as a “barcode”, representing the genes that
are up-regulated (zji>zthresh) or down-regulated (zji<" Zthresh)
compared to the control group (Fig. 1e). In the following, we
focus on profiles obtained for zthresh = 2.5 (see Supplementary
Fig. 1 for the impact of zthresh on our results).
To characterize the PEEPs, we compare the group of genes

perturbed in individuals with DE genes obtained from a standard
group-wise approach (see Methods). Our first observation is that
only for HD, we find group-wise DE genes that are contained in all
individual profiles. For asthma and PD, no single gene is perturbed
in all case subjects. Figure 2a shows the distribution of the number
of subjects whose personalized profile includes the same gene for
asthma (see Supplementary Fig. 3 for HD and PD). The maximal
number of subjects sharing the group-wise DE gene FKBP5 is 33
out of 55, i.e., 60% of all asthmatic subjects. The mean number of
asthmatic subjects in which a group-wise DE gene is significantly
perturbed is 6, or 11% of all asthmatic subjects. In PD, there is one
group-wise DE gene that is shared among 15 out of 16 case
subjects, in HD there are 18 genes shared among all 17 patients.
On average, the group-wise DE genes are contained in 31 and
29% of the case subjects for PD and HD, respectively (see also
Supplementary Fig. 3). Figure 2b summarizes the fraction of the
group-wise DE genes contained in the individual profiles. While
this fraction is significantly higher in case subjects than in control
subjects, it is still surprisingly low: For asthma, on average less
than 8% of the group-wise DE genes are found in an individual
profile. The highest numbers are observed for PD, where case
subjects contain on average 29%. These results lead to two key
main findings, on one end indicating that often DE genes
identified by standard group-wise approaches are significantly
perturbed only in a small fraction of individuals with the disease
and likewise, any individual displays only a small fraction of all
group-wise DE genes in their PEEP.

Quantifying the heterogeneity among individual perturbation
profiles
To quantify the underlying expression heterogeneity of a disease,
we move beyond the group-wise DE genes, and ask instead how
similar are the PEEPs of two individuals with the same disease.
Figure 2c shows the distribution of Jaccard indices J ¼ jA\Bj

jA[Bj for all
pairwise gene sets A and B of the individuals in the case, and
control groups of three diseases. For asthma, the mean pairwise
similarity ðhJi ¼ 3 ´ 10"2Þ is three times higher in the case group
than in the control group ðhJi ¼ 1 ´ 10"2Þ. While this difference is
highly significant (p-value <10−77, Mann–Whitney U test), in
absolute numbers the overlap is small: while a typical asthmatic
subject has on average 379 perturbed genes, the average number
of shared perturbed genes between two asthmatic subjects is only
24 (Fig. 2d). For HD and PD, the average overlap between the
profiles of two cases is much higher (796 and 627 common genes,
respectively) due to the much higher number of genes in the
individual perturbation profiles. Yet, the Jaccard similarities remain
relatively small, observing hJi % 0:24 and hJi % 0:14 for HD and
PD, respectively. The same analysis can also be performed on the
full continuous z-score profiles using Pearson correlation as
measure of similarity, yielding similar results (see Supplementary
Fig. 2)
To quantify whether the observed overlap between the PEEPs

of the case subjects could have emerged by chance, we calculated
the statistical significance for each pair individually using Fisher’s
exact test. As expected, we find the overlap to be significant for
most subject pairs, even after applying the most conservative
Bonferroni correction (Fig. 2e).
The significant pairwise overlap documented in Fig. 2c–e is not

the result of a set of genes that are common to most subjects.
Indeed, as shown in Fig. 2f for asthma, most genes within the
individual profiles are perturbed only in relatively few individuals,
the mean number of subjects being 3, which is 5% of all the
subjects (see Supplementary Fig. 3 for HD and PD). The most
frequently perturbed gene appears in the PEEP of 33 subjects,
representing 60% of the case cohort. Comparing Fig. 2a and f, we
notice that the genes appearing in many subjects’ PEEPs are often
also identified in the group-wise analysis, which is expected. Yet,
the lack of genes present in all individual perturbation profiles
again illustrates that a group-wise analysis offers only a partial
picture of the expression patterns that characterize complex
diseases.
This leads to our second main result: we observe highly

significant similarities between the PEEPs of case subjects,
similarities that are absent in healthy subjects. These similarities
cannot be attributed to a few widely shared DE genes identified
by the group-wise differential expression analysis, but arise from
more complex patterns of pairwise overlaps.

Functional analysis of the perturbation profiles
The low overlap between the personalized profiles of case
subjects prompts us to ask how the molecular level heterogeneity
translates into relatively homogeneous disease phenotypes. To

Fig. 3 Functional characteristics of the genes in PEEPs. a A schematic figure illustrating how the same pathway associated with a specific
function may be disrupted by perturbations at different locations in different subjects. b Individual perturbations of all asthmatic subjects
within the asthma-specific pathway IFN-γ and Th2 cytokines-induced inflammatory signaling in normal and asthmatic airway epithelium. Each
row corresponds to one pathway gene and each column to one subject. On the right: the number of subjects that have the respective gene up-
regulated or down-regulated. Below: number of up-regulated or down-regulated genes within the pathway for each subject. c Pairwise
similarity as measured by the Jaccard index of the pathway perturbations of all subject pairs whose profiles are significantly enriched within
the pathway (Fisher’s exact test with Bonferroni correction, p-value <0.05) for all considered asthma-specific pathways (see Supplementary
Table 1). Note that only the genes within the respective pathway areused for the comparison. d-f as in (c), but averaged over all geneGO terms
and general MSigDB pathways that are significantly enriched in the profiles of the respective subjects (see Methods). BP biological process, MF
molecular function, CC cellular component
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address this, we examine the extent to which the individual
profiles reflect disruptions in common disease-specific pathways
(Fig. 3a). We compiled a list of 35 previously identified asthma-
related pathways from GeneGo (portal.genego.com) (Supplemen-
tary Table 1), and compared the individual perturbation profiles of
each asthma subject with each pathway. Almost all pathways
show at least one perturbation in most subjects, and all pathways
are significantly enriched in at least two individuals (Fisher’s exact
test, p-value <0.05, Bonferroni correction for number of pathways).
Take for example the pathway IFN-γ and Th2 cytokines-induced
inflammatory signaling in normal and asthmatic airway epithe-
lium, in which 49 out of 55 asthma subjects (89%) have one or
more PEEP perturbation. Yet, as Fig. 3b shows, the precise location
of the perturbations within the pathway varies considerably
between the individuals. In total, 33 (out of 61) genes of the
pathway are up-regulated or down-regulated in one or more
patients. The genes that appear most frequently (13 subjects) are
CCL26 and REL, both previously associated with asthma.24–26 These
two genes are also consistently perturbed in the same direction
(Fig. 3b). At the same time, several genes, like IL13RA1 or STAT6,
are up-regulated in some patients, and down-regulated in others,
suggesting that for these genes, the direction of the perturbation
is secondary for the disease association. A possible biological
interpretation could be that these genes correspond to tightly
regulated checkpoints within the pathway, such that any
deviation from the homeostatic level would result in a disease-
associated perturbation, regardless of the direction of the
deviation.
We next determined the Jaccard similarity of the respective

individual perturbed pathway genes for each pair of subjects,
whose PEEPs are significantly enriched with genes of the pathway.
The low similarity values (J∼ 0.1, Fig. 3c) confirm that although all
considered subjects show significant perturbations in these
asthma-specific pathways, the specific perturbations differ greatly
between subjects. These differences limit the power of group-wise
DE gene sets to detect affected pathways. As shown in
Supplementary Table 1, group-wise DE genes cover only a small
fraction of the asthma-related pathways: only 7 out of 35
pathways show nominally significant enrichment (uncorrected p-
value <0.05, Fisher’s exact test); after Bonferroni correction, only
two pathways remain. Taking individual perturbation profiles into
account thus considerably boosts the ability of enrichment
analysis tools to identify important disease-associated pathways.
We repeated the analysis of the heterogeneity among

perturbed pathways also for AD and PD, using general pathway
annotations from Molecular Signatures Database (MSigDB)27 and
functional gene ontology (GO).28 The results again indicate that
the same biological function or pathway is perturbed in different
ways in different patients (Fig. 3d–f). These results allow us to
formulate our third main result: while patients show considerable
perturbation heterogeneity at the PEEP level, they show a high
degree of homogeneity at the pathway level. In other words, the
different perturbations within a certain molecular pathway lead to
similar outcomes, in line with the disease module hypothesis.

Predicting diseases from PEEPs
Taken together, our results indicate that patients with the same
disease exhibit highly heterogeneous perturbations that never-
theless point towards common functional disruptions. This
suggests the existence of a broader group of genes, whose
perturbations are associated with the specific disease. As we
demonstrate next, by compiling all genes that are perturbed in a
significant fraction of the case subjects, we can accurately predict
the disease state of each patient.
Given the relatively high number of genes perturbed in the

individual profiles (Fig. 2a), a gene may appear in several subjects
simply by chance. Indeed, we find that the number of genes that
are shared among control subjects is compatible with random
expectation (Fig. 4a). In the healthy control group, possible
individual perturbations of the regulatory network are unlikely to
be shared among different individuals. For this group, the
simplified model of complete independence between subjects is
thus a reasonable approximation, as also shown by the good
agreement between data and theory reported in Fig. 4a. For case
subjects, however, the number of shared genes significantly
exceeds the random expectation (Fig. 4b). These frequently
appearing genes point to the existence of a disease module, a
pool of genes whose perturbations are often associated with the
disease. Using a combinatorial model, whose basic assumption is
that the individual PEEPs constitute random subsets of the disease
module (see Methods for details), we can determine the size of
this module analytically, obtaining gene pools containing 234
genes for asthma, 470 for PD and 1076 for HD (Fig. 4c).
Perturbations of these modules uniquely characterize the

respective diseases. To show this, we used a repeated cross-
validation approach, and determined the different PEEP’s overlap
with the disease module (see Methods). We find that the fraction
of genes from the disease module perturbed in an individual
subject accurately predicts whether the subject has the disease.
For asthma, the PEEPs of case subjects contain on average 21% of
the asthma disease pool, compared to less than 7% for the control
subjects. For PD and HD, the overlap of the case subjects with the
corresponding disease modules is much higher, obtaining 65 and
86% respectively, compared to 20 and 6% for the control subjects.
This indicates that PD and HD are characterized by a more specific
set of characteristic perturbations, while asthma displays a more
heterogeneous range of associated perturbations. The receiver
operating characteristics (ROC) in Fig. 4d show that the fraction of
genes from the general pool that are contained in an individual’s
perturbation profile can be used as a near highly accurate classifier
to distinguish between case and control subjects with high
sensitivity and specificity (Fig. 4e). The area under the curve (AUC)
values for asthma, PD and HD are 0.77 ± 0.03, 0.81 ± 0.06 and
1.0 ± 0.0 (mean value ± standard deviation computed over 100
cross-validations), respectively. Note that these results were
obtained with the threshold zthresh = 2.5 that we used throughout
the manuscript, and can be further improved by optimizing zthresh
and the minimal number of PEEPS X in which a gene must appear
to be considered for the disease pool (Supplementary Fig. 4). We
also benchmarked our results against a widely used k-nearest

Fig. 4 Integrating the personalized profiles into a predictive pool of disease-associated genes. a, b Distribution of the number of individual
perturbation profiles in which a gene appears for a control and b case subjects of the three considered diseases. The two curves in each panel
correspond to the actual data and the random expectation according to a model of randomly selected genes (green). c Venn diagram of three
broad gene pools compiled from genes that are in at least X individual perturbation profiles. d The ROC for the disease state classification
by the fraction of the broad gene pool that is contained in a subject’s perturbation profile. The AUC values are 0.77± 0.03, 0.81± 0.06 and
1.0± 0.0 for asthma, PD and HD, respectively (mean value± standard deviation computed over 100 cross-validations). e Sensitivity
and specificity as a function of the fraction of broad gene pool for asthma (zthresh= 2.5; X= 10). f Illustration of the disease model suggested
by the analysis of PEEPs

Integrating personalized gene expression profiles
J Menche et al

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2017) �10�

http://www.portal.genego.com


neighbor (knn) classification algorithm29 (Methods), and found
comparable performance (AUC values of 0.80 ± 0.03, 0.85 ± 0.06
and 0.98 ± 0.02 for asthma, PD and HD, see Supplementary Fig. 5).
This not only demonstrates that a classifier based on our
combinatorial model offers predictive power similar to the one
of state-of-the-art machine learning approaches, but more
generally confirms the validity and self-consistency of the basic
PEEP concept itself. Indeed, the PEEP concept complements
exiting machine-learning approaches as it offers a straightforward
biological interpretation of the obtained classification in terms of
overlapping perturbation profiles that can also easily be further
investigated, using for example, gene set enrichment analyses as
demonstrated above. Furthermore, the PEEP-based classification
procedure directly yields a measure for the heterogeneity of the
disease, as the combinatorial model explicitly uses the overlap of
an individuals PEEP with the broad disease pool to classify the
disease status.

DISCUSSION
Group-wise expression analysis has two important limitations: (i) It
can only identify genes that are consistently (i.e., in the same
direction) perturbed in a large fraction of the patients. (ii) It does
not yield patient-specific information. Here, we introduced a
simple, yet powerful method that overcomes these limitations and
offers personalized perturbation profiles (PEEPs). The method can
be interpreted as a generalization of group-wise differential
expression methods with PEEPs representing personalized DE
genes. As a consequence, the PEEPs can be easily interpreted, and
further analyzed using established tools, such as the gene-set
enrichment analysis used above.
As illustrated in Fig. 4f, the overlap between the genes

perturbed in any two patients is relatively small. Indeed, of the
three diseases considered here, only HD exhibited genes that
were perturbed in all case subjects, likely rooted in the fact that
HD is a classic monogenic disease. For asthma and PD, on the
other hand, there is not a single gene expressed in the PEEP of all
patients.
Despite the high gene level variability, the commonalities at the

functional and pathway level indicate that complex diseases arise
from disruptions of certain biological processes or disease
modules,30 hence the observed heterogeneity simply reflects the
molecular diversity of such disruptions. We therefore expect
considerable variability among the expression profiles of subjects
with the same disease not despite, but because they all have the
same disease. Recently, a number of studies proposed various
strategies for dissecting disease heterogeneity, in particular in the
field of cancer. The PARADIGM algorithm,31 for example, infers
patient-specific pathways using various omics-type information,
such as expression and mutational data, together with curated
pathway interactions. Another widespread algorithm, HotNet232

tackles the genetic heterogeneity of different cancer samples
using the concept of information propagation starting from
known mutations, in order to identify cancer-related subnetworks
in signaling networks. In this work, we document the existence of
large disease module also on other disease areas, and using
transcriptional data only. We find that a sufficient level of random
perturbations among these disease modules can accurately
predict the presence/absence of a particular disease. We
integrated the personalized profiles of all patients to reconstruct
the respective disease module, finding that the fraction of genes
in an individual’s PEEP is a near perfect predictor for a patient’s
disease status. This suggests that personalized profiles could
identify combinatorial biomarker signatures that go beyond single
markers. With next-generation sequencing technology advancing
at a fast pace, there is great potential for applying RNAseq
technologies to identify transcriptional signatures also in a clinical
setting.33 Such signatures are of key importance for personalized

medicine and could, for example, help diagnose previously
unrecognized diseases. While the results presented here provide
first evidence of the general feasibility of using our approach to
obtain predictive biomarkers, a comprehensive reference base
across all relevant diseases, and more extensive tests concerning
the robustness and reliability of the resulting disease pools will be
required towards an actual clinical application. The observed
heterogeneity among the individual perturbation profiles further
indicates that single-target drugs may be effective only in a small
number of patients. Instead, multi-target strategies may prove
more promising for drug development.34 Our approach can be
used to quantitatively assess the expected fraction of patients for
which a drug is expected to be effective, helping guide the
development of targets with maximal efficacy.

METHODS AND MATERIALS
Gene expression data
We use data from an ongoing study by Janssen Research & Development
for asthma (manuscript in preparation), and previously published
expression profiling studies for HD19 and idiopathic Parkinson’s disease.35

The asthma dataset contains 55 case subjects with moderate or severe
asthma, and 25 gender-matched and age-matched healthy control
subjects, see ref. 36 for a detailed description of the cohort. The asthma
samples were collected from bronchoscopy (endobronchial biopsies and
brushings), preserved immediately in RNAlater® solution and then
maintained at −70 °C. Qiagen miRNeasy kit (Qiagen; Germantown, MD,
USA) and NuGen ovation pico WTA kit (NuGen Technologies; San Carlos,
CA, USA) were used to extract and amplify RNA. cDNA is profiled using
Affymetrix HG-U133+PM chip (Affymetrix, Santa Clara, CA, USA). CEL files
were assessed using Almac Diagnostics Microarray Toolbox for quality
control (chip image analysis, Affymetrix GeneChip QC, RNA degradation
analysis, distribution analysis, principal components analysis, and correla-
tion analysis) and technical outliers are excluded. Robust multi-array (RMA)
method is used to renormalize the profiles, followed by batch effect
adjustment via linear modeling of batch (as random factor) and cohort.
The HD dataset19 (GEO accession number GSE1767) contains analysis of
blood samples from 17 case subjects (5 presymptomatic and 12 sympto-
matic) and 14 control subjects. In HD, the gene expression is suggested to
be altered in a variety of tissues including peripheral blood. Affymetrix
U133A GeneChips, and Amersham Biosciences CodeLink Uniset Human I
and II bioarrays were used to analyze the gene expression in blood
samples. The Parkinson’s disease data (GSE7621) contain 16 case and 9
control subjects for which multiregional gene expression analysis was
conducted in postmortem brain using Affymetrix HG U133 Plus 2.0 gene
chips. For the PD and HD datasets, the details of the sample generation
and expression profiling can be found in the original publications. We
reprocessed the raw data set in GEO for Parkinson’s using RMA with
quantile normalization as implemented in the R package ‘affy’. We verified
the quality of the data sets by checking the gene expression distribution
and sample clustering in PCA. All expression levels in the PD and HD data
were log2 -transformed to facilitate direct comparison of the three data,
overall results do not depend on the transformation, however. Basic
statistics of the used datasets are shown in Supplementary Fig. 1.

Group-wise differential expression analysis
We identify the genes DE between case and control subjects using the
limma R Bioconductor package.37 The difference between expression
levels of case and control subjects are assessed by fitting the expression
levels to a linear model using one coefficient for each group in the design
matrix. The probe-sets were mapped to Entrez Gene IDs using the platform
annotation files in each data set. In case there were multiple probe sets
corresponding to the same Gene ID, the probeset with the maximum
expression was used in the analysis. The p-values were corrected for
multiple hypothesis testing using the Benjamini–Hochberg method.38 At a
cut-off of FDR <0.2, we obtain 417, 524 and 7419 DE genes for asthma, PD
and HD, respectively.

Personalized perturbation analysis
To construct the personalized perturbation profile of a subject j, we
compare the expression level lji of each of its genes i to the reference
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distribution of expression levels of the same gene within the control group.
The extent to which gene i is perturbed in subject j is quantified by

the z-score zji ¼
lji"hli icont
σcontðliÞ that indicates by how many standard deviations

σcontðliÞ, the individual expression level lji is away from the mean value hlii
of the control group. Note that if subject j itself is part of the control group,
we do not consider it for the computation of the reference distribution but
use only the remaining control subjects. We then use a threshold zthresh to
define the set of genes that are perturbed in an individual subject. Positive
z-scores zji>zthresh indicate up-regulation, negative values zji<" Zthresh

indicate down-regulation. The role of zthresh is thus analogous to the one of
cutoffs for calling differential expression in standard group-wise analyses.
Higher zthresh values result in smaller, more stringent PEEPs that potentially
miss out relevant genes with less pronounced perturbations, while lower
zthresh values provide a more global picture that may, however, also
contain an increased number of false positives. The precise choice of zthresh
can be optimized for specific purposes, such as disease patient
classification (compare with Supplementary Fig. 4).
We systematically evaluated the stability of the obtained z-scores

against changes in the population size by removing increasing numbers of
subjects from the control population: we first calculated the expression
level that corresponds to z-score = 2.5, compared to the average mean and
standard deviation of all genes and all control subjects. We then observed
how the z-score of this expression level changes while randomly removing
an increasing number of subjects from the pool of control subjects (up to
50% of the original population). For each gene, we then calculated the
ratio of the z-score obtained from the decreased population to the original
z-score calculated from the original population. Supplementary Fig. 6
shows that for small numbers of the removed subjects, the fluctuations are
very small, indicating stable z-scores. As expected, the fluctuations grow as
more and more subjects are removed. We conclude that all considered
datasets have a sufficient number of control subjects in order to yield
reliable perturbation profiles. Conversely, the data suggest that increasing
population sizes can further stabilize the PEEPs, ultimately converging into
a fixed pool of disease-specific genes.

Analytical comparison with randomly distributed genes
To determine the minimal number X of case subjects in which a gene must
be perturbed in order to be collected into the global combinatorial pool of
disease associated genes, we use a comparison with random expectation.
We consider a null model where each subject has g perturbed genes that
are drawn completely at random from all G genes. The probability for one
gene to be perturbed in exactly k out of n subjects is then given by the
binomial distribution

f ðk; n; pÞ ¼ Prðx ¼ kÞ ¼ n
k

! "
pkð1" pÞn"k

with p = g/G. Using the mean number of genes observed in the individual
profiles for g, the histogram of the number of subjects per gene can now
be obtained by simply multiplyingG ´ f ðk; n; pÞ. We find excellent
agreement between this formula and the distributions observed among
the control subjects, but, as expected, not for case subjects (Fig. 4a, b). The
maximal number of subjects Xrand that are expected per gene according to
this random model can be obtained from

Xn

k¼X rand

G f ðk; n; pÞ<1;

which can be solved by simply testing the increasing values. Finally, we
choose the minimal value as X = Xrand + 1, thereby ensuring a broad, yet
high-quality pool of disease-associated genes. The calculated values are
X = 10 for asthma, X = 9 for PD and X = 10 for HD.

Cross-validation analysis for disease state prediction
We performed a fivefold cross-validation analysis using the fraction of
genes of the combinatorial pool of disease-associated genes that is
contained in a subject’s personal perturbation profile to predict the disease
state of the subject. Note that, we do not take the direction of the
perturbation into account. If the fraction is larger than a given threshold
that can be determined from the training data we classify the subject as
‘case’, otherwise as ‘control. This threshold not only allows for patient
classification, but can also be interpreted as a direct measure of the
heterogeneity of a disease.

For the cross-validation, we randomly split the subjects into five groups
having similar proportions of cases and controls as in the full dataset. We
then iteratively use each group as the validation set, and the remaining
four groups as training data to generate the PEEPs and the combinatorial
disease pool. Next, we calculate the fraction of the combinatorial pool that
is contained in the PEEP of each subject in the validation set. By using all
identified fractions as putative thresholds for classification as ‘case’ or
‘control’ and comparing with the true labels, we then construct the ROC
curve and calculate the AUC. Note that the classifier is completely blind to
the information of the left-out validation subjects, thus avoiding overfitting
due to the fact that the combinatorial pool itself is compiled from all genes
that are perturbed in X or more case subjects. The entire procedure is
repeated 100 times to get robust estimates of the ROC curve and the AUC.
We further compared the performance of the PEEP-based classification

to a knn-based classification. For every sample in the test set, we calculated
the gene expression correlation with all samples in the training set, and
then ranked the training samples according to the strength of the
correlation. The known disease states of the k most similar samples (i.e.,
highest correlation) is then used to score the test sample’s likelihood to
belong to the same class. After evaluating a range of values of k (=3, 5, 10,
15, 20), we found k = 15 to offer the highest prediction accuracy. Note that
while the knn method allows for a high-quality classification, the
subsequent interpretation of a classification result is less straightforward
compared to the PEEP approach above, which is directly based on
overlapping gene sets that can be immediately further investigated and
potentially validated.
To estimate the influence of the sample size on the final accuracy of the

classification analysis, we further repeated both the knn and the PEEP-
based classification using a twofold validation scheme, such that only half
of the case and control subjects are available for training. The results
shown in Supplementary Fig. 5 demonstrate that both approaches are
rather robust against variations in the sample size (AUC values for the
PEEP-based approach are 0.72, 0.78 and 1.0 for asthma, PD and HD,
respectively).

Functional gene annotation data
To analyze the biological function of genes and gene sets we use GO
terms, general pathway annotations and asthma-specific pathways. GO
annotations28 were downloaded from http://www.geneontology.org/. We
only use high confidence annotations associated with the evidence codes
EXP, IDA, IMP, IGI, IEP, ISS, ISA, ISM or ISO and further remove all
associations with a non-empty “qualifier” column.39 Since the provided GO
files only contain the most specific annotations explicitly, we add all
implicit more general annotations by up-propagating the given annota-
tions along the full GO tree.
The general pathway annotations were taken from the MSigDB

published by the Broad Institute, Version 4.0.27 MSigDB integrates several
pathway databases; we use those from KEGG, Biocarta, and Reactome.
Asthma-specific pathways (Supplementary Table 1) were compiled using

the GeneGo Software.

Gene set enrichment analysis
The enrichment analysis between a given gene set and a pathway or GO
annotation (‘term’) is done using Fisher’s exact test. We considered a term
to be significantly enriched if p-value <0.05 (Bonferroni correction for
number of tested terms). For each bar in Fig. 3d–f, we first determined all
terms that are significantly associated with the genes in the individual
profile of at least three case subjects. For each significant term, we then
computed the Jaccard index for all possible pairs of subjects with profiles
enriched with the respective term. Note that we use only the genes
associated with the respective term to compute the Jaccard index. Finally,
we combine all Jaccard values of all pairs and all GO terms into one
distribution, which is represented by the whisker bars.

R-package
We provide the R package ‘PePPeR’ (Personalized Perturbation ProfileR),
which includes functions to fetch expression data sets from the GEO
database, identify group-wise DE genes and construct individual
perturbation profiles. The R package along with its documentation is
available at https://github.com/emreg00/pepper.
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