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10.1 Introduction
Since the publication of the first draft of the human genome less than two decades ago
[1, 2], rapid technological progress has revolutionized biomedical research. Thanks
to a diverse array of “omics” technologies (e.g., genome sequencing, transcriptome
mapping, proteomics, metabolomics, and others), we can now quantify both healthy
and disease states at molecular resolution. At the same time, it has become clear
that the detailed characterization of the individual molecular components alone
(genes, proteins, metabolites, etc.) does not suffice to truly understand the nature
of (patho-) physiological states and how to modulate them. Indeed, biomolecules
do not act in isolation, but within an intricate and tightly coordinated machin-
ery of complex interactions, such as protein–protein, gene regulatory, or signaling
interactions. Network medicine is an emerging field that aims to apply tools and
concepts from network theory to elucidate this machinery. Network approaches have
helped unravel the molecular mechanisms of a broad range of diseases, from rare
Mendelian disorders [3], cancer [4] or metabolic diseases [5], to basic attack strategies
of viruses [6], to name but a few examples. While the molecular networks that
underly biological processes may be the most natural candidate for applying network
concepts in biomedical research, they are certainly not the only one. Networks are
used across the full spectrum of medicine, from biomarker [7] to drug discovery [8],
from the spread of obesity [9] to global outbreaks of infectious diseases [10], and
from characterizing the relationships among diseases [11] to those among physicians
within the health care system [12].

This chapter aims to give a general introduction to the dynamic field of network
medicine. We start with a broad overview of major network types that are relevant to
medicine. We then discuss with more detail the cellular network of molecular interac-
tions among proteins and other biomolecules, the perhaps most widely used network
in biomedical research. In the last section, we introduce disease module analysis, an
important application of network tools to elucidate the molecular mechanisms of a
particular disease.
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10.2 Networks in Medicine

10.2.1 Overview

One can distinguish three basic network types that cover different disease-relevant
relationships: (i) Molecular networks describing the relationships between the molec-
ular constituents of living organisms, for example, maps of all protein–protein interac-
tions or metabolic reactions in a cell. The observation that such molecular maps share
certain universal topological features with vastly different systems, e.g., the World
Wide Web, collaboration networks, power grids, and many others, was instrumental
for the development of network science. Today, it seems almost trivial that networks
provide the most natural way of describing and analyzing the large-scale organiza-
tion of biomolecules and their interactions. (ii) Disease networks are a powerful tool
to investigate the diverse relationships between diseases. For example, two diseases
can be linked if they share genetic associations or if they have similar clinical man-
ifestations. In contrast to molecular networks, in which links often represent direct
physical interactions, disease–disease networks represent more abstract relationships.
They therefore serve as beautiful examples for the power of networks as a general
tool for the analysis, integration, and intuitive visualization of large and complex
data. (iii) Population-scale networks, i.e., networks describing the complex interac-
tions among humans have been very successful in modeling and predicting the spread
of contagious diseases, for example, global swine flu or ebola pandemics. These stud-
ies show the enormous potential of networks to serve as a platform for translating
exact analytical results from physics and mathematics and translating them to concrete
applications in medicine. (See Box 10.1.)

10.2.2 Molecular Networks

There are a plethora of molecular networks describing different aspects of the
molecular and cellular organization of living organisms. A broad distinction can
be made between physical and functional interaction networks. Physical interactions
involve actual physical contact between the participating biomolecules, for example,
proteins that assemble in a complex or receptor–ligand binding. Functional interac-
tion, on the other hand, can refer to any kind of biologically relevant relationship.
In co-expression networks, for example, genes are connected if their expression
patterns are strongly correlated [13]. In the following we introduce the main types
of molecular networks that are used to elucidate diverse disease mechanisms. Some
of them were introduced in previous chapters, but we also summarize them here for
completeness.

10.2.2.1 Protein–Protein Interaction Networks
Many molecular processes within a cell are performed by molecular machines con-
sisting of a large number of protein components organized by their protein–protein
interactions (PPIs). PPIs result from biochemical events steered by electrostatic forces
leading to physical contacts of high specificity between two or more proteins [14]. Per-
turbed PPIs are involved in the pathobiology of many diseases, ranging from diabetes
and obesity to Crohn’s disease or cancer [15]. In analogy to the “genome” representing
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Box 10.1: Networks in medicine
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The diverse networks that are studied in network medicine reflect the
different levels of organization that are relevant to human disease. From the
molecular level, e.g., networks of interacting biomolecules that form the
basis of all cellular processes, to the level of social interactions that are
involved in the transmission of infectious diseases. Depending on the
particular system, different network types are used for their description.
Undirected and unweighted networks represent the most basic network
type. More complex types may include a link directionality, link weights or
use different types of nodes, for example in bipartite networks.

the collection of all genes in an organism, the collection of all molecular interactions
is often referred to as the “interactome.” The interactome can be represented by a
network in which the nodes are proteins and the edges correspond to physical inter-
action between them. Over the last decade, significant experimental efforts have been
made to map out the complete human interactome. High-throughput techniques such
as yeast two-hybrid (Y2H) and immunoprecipitation linked to mass spectrometry
are capable of mapping thousands of interactions in parallel (see Box 10.2). There
has also been substantial work in curating interactions that were identified in small-
scale experiments, as well as using computational tools to predict interactions [15].
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Box 10.2: Mapping the human interactome
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There are two major high-throughput techniques for the identification of
protein interactions:

Yeast two-hybrid: (1) the system uses a protein consisting of a DNA binding
domain (BD) and an activation domain (AD) that is responsible for
activating transcription of DNA. (2) In Y2H, the two domains are separated
and fused to proteins whose interaction is investigated. The BD is fused to
the so-called bait, the AD to the prey. (3) Upon interaction between the two
proteins of interest, the AD comes in close proximity to the reporter gene and
the transcription leads to a signal.

Co-immunoprecipitation coupled to mass spectrometry: (1) In a first step, a
target (bait) protein-specific antibody is immobilized on beads (e.g., agarose).
(2) When the cell lysate is added, the antibody will specifically bind the
target protein and indirectly capture proteins (prey) that are capable of
binding to it. (3) After washing away unbound proteins, (4) the proteins of
interest are eluted and analyzed using mass spectrometry. In short, the
sample (the proteins) is first ionized and fragmented into smaller molecules,
e.g., amino acids and peptides. Their mass-to-charge ratios can then be
determined by accelerating the ions and subjecting them to an electric
and/or magnetic field. Finally, the proteins in the sample can be identified
by comparing with databases of known masses and characteristic
fragmentation patterns.

Despite these promising first steps, our knowledge of the human interactome map
remains far from complete, estimates indicate that only 10–30% of the full interac-
tome has been revealed currently [16]. Nevertheless, interactome-based studies have
contributed substantially to our understanding of biological processes both in home-
ostasis and in disease states, see Section 10.3.
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10.2.2.2 Metabolic Networks
Metabolism (from Greek for “change”) refers to the sum of all processes
that are involved in assembling and disassembling the basic building blocks of cells,
in particular the biochemical reactions for energy conversion. Traditionally, these
reactions have been organized into specific pathways, for example the tricarboxylic
acid (TCA) cycle, which corresponds to the sequence of chemical reactions in the
cell that produces energy (also known as citric acid – or Krebs cycle, named after
Hans Krebs, a Nobel Laureate in 1953). Metabolic networks represent collections
of such pathways that connect chemical compounds (metabolites), biochemical
reactions, enzymes, and genes. The relationships between the individual components
of a given metabolic system can be inferred using comparative genomics combined
with metabolomic data [17]. Metabolic networks are the most complete among the
different biological networks, i.e., they reflect a near exhaustive knowledge of the
involved biochemical processes [18]. They are available for a wide range of species
and can be accessed through databases such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [19] or Reactome [20]. The currently most comprehensive human
metabolic network, Recon 2.2 [21], includes 5,324 metabolites, 7,785 reactions, and
1,675 associated genes. Such metabolic networks do not only offer deep insights into
the basic machinery of cells, but can also be used for in silico simulations to study how
different parameters (e.g., metabolite concentrations) affect local and global properties
of the biochemical network. The two most commonly used methods employ either
(1) deterministic approaches (e.g., systems of ordinary differential equations) or (2)
stochastic models (e.g., effect probabilities upon network perturbation) [22]. Metabolic
network analyses can yield profound insights into the evolutionary emergence of
complex life forms [23, 24], help understand the molecular mechanisms that drive the
response to vaccination [25], or elucidate the interplay between metabolism and gene
regulation [26]. (See Box 10.3.)

10.2.2.3 Regulatory Networks
Regulatory networks describe the complex machinery of genes and their correspond-
ing proteins and RNAs, as well as the interactions between them that control the
level of gene expression across the genome under specific conditions. Of particular
importance for expression regulation are transcription factors (TFs), i.e., DNA-binding
proteins that modulate the first step in gene expression [27]. In the most common
representation of regulatory networks, nodes correspond to genes and links to the reg-
ulation of the expression of one gene by the product of the other. The links are typically
directed and have either an activating (i.e., an increase in the concentration of one leads
to an increase in the expression of the other) or inhibitory effect (increase in the concen-
tration of one leads to decrease in the other) [28, 29]. Several experimental techniques
exist to create large-scale data for building genome-wide regulatory networks, such as
Chromatin-Immunoprecipitation Chip (ChIP-on-chip) [30] and ChIP-Sequencing [31].
Comprehensive databases include the Universal Protein Binding Microarray Resource
for Oligonucleotide Binding Evaluation (UniPROBE) [32] or JASPAR [33].

Gene regulatory networks provide powerful tools to identify key transcription
factors that control cell fate, for example in early blood development [34, 35].
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Box 10.3: Metabolic and regulatory networks
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Metabolic networks describe the conversion/transformation of chemicals
(metabolites) within a cell, organ, or whole organism. The nodes represent
specific molecules while the edges describe the chemical reactions that take
place between the nodes. Often these reactions are catalyzed by enzymes.
Specific routes/compartments that are known to perform a particular
function are called pathways.

Gene regulatory networks consist of genes that regulate each other. Often
these genes are transcription factors that are capable of binding to DNA. The
type of interactions can be either positive leading to an increase of protein
concentration of the regulated gene, or negative, which leads to a decrease in
protein concentration.

They can also be used to interpret variants identified in genome-wide association
studies (GWAS), as they often perturb regulatory modules that are highly specific to
disease-relevant cell types or tissues [36]. Lastly, gene regulatory networks also shed
light on evolutionary conditions and pathways by which new regulatory functions
emerge [37]. (See Box 10.3.)

10.2.2.4 Co-Expression Networks
In co-expression networks, genes are linked if their expression levels are significantly
correlated under different experimental conditions, for example over time, across dif-
ferent tissues or cell types, or across a patient population (see Box 10.4 for an overview
of the construction process) [13, 39]. In contrast to regulatory networks, co-expression
networks do not offer an immediate causal relationship between genes. They can be
used, however, to identify groups of genes that are more broadly functionally related,
for example, controlled by the same transcriptional regulatory program, or members
of the same pathway or protein complex [40]. Network analyses have been used to
identify commonly affected pathways in heterogeneous diseases like autism spectrum
disorder [41] or inflammatory bowel disease [42], predict causal GWAS genes associ-
ated with bone mineral density [43], or help explain the mechanism of breast cancer
development [44].
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Box 10.4: Co-expression networks
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Construction of a co-expression network: Creating a co-expression network
requires gene expression data over several conditions, for example different
treatments, across several tissues or patients. For each gene pair one can then
calculate a correlation coefficient for their respective expression values across
the different conditions, resulting in a correlation matrix. Extracting
biologically meaningful correlations can be quite challenging, as true signals
are often masked by noise that can arise, for example, from experimental
confounding factors, batch effects, or sample heterogeneity. A widely used
alternative to somewhat arbitrary global thresholds preserves the continuous
nature of correlation scores and instead applies soft thresholding to identify
network subclusters [13]. With recent large-scale resources, such as
GTEx [38], noise from sample heterogeneity can be reduced and
co-expression networks can be constructed in a tissue-specific manner, thus
providing deeper and more robust insights onto the regulatory system in
diseases.

10.2.2.5 Genetic Interactions
Two genes are linked by a genetic interaction if the effect of a simultaneous alter-
ation (e.g., a mutation or the complete knock-down) of both genes differs from the
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Box 10.5: Genetic interactions
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Genetic interactions occur when the phenotype of two combined mutations
differs significantly from the expectation based on the individual mutations.
These interactions can be either positive (combined effect stronger than
expected) or negative (combined effect weaker). The two most extreme
outcomes are called “synthetic lethality” and “synthetic viability.” In
synthetic lethality the two individual mutations often occur in two
independent, yet redundant pathways, so that the loss of one can be
compensated for by the second. Only when targeting both pathways the
systems fails. In synthetic viability the mutation in one pathway often leads
to a toxic gene product. Only by also affecting another pathway the
production of this toxic product is stopped and the resulting phenotype is
again viable.

expectation based on the individual alterations [45] (see Box 10.5). The most extreme
negative genetic interaction, often called “synthetic lethality,” occurs when the
simultaneous mutation of two genes is lethal, while individually both mutations are
viable. Conversely, the most extreme positive genetic interaction (“synthetic viability”)
occurs, when a combination of two mutations is viable, while both individual
mutations are lethal. Genetic interactions imply a functional relationship between
the two genes, for example involvement in a common biological process or pathway,
or conversely involvement in compensatory pathways with unrelated apparent func-
tion [46]. Hence, genetic interactions are an effective tool for biological discovery, e.g.,
for dissecting signaling pathways. They may also explain a considerable component
of undiscovered genetic associations with human diseases and might help identify
potential therapeutic targets. Over the last decade, genetic interactions have been
investigated using mainly synthetic genetic array technology and RNA interference in
yeast and Caenorhabditis elegans. A recent yeast based high-throughput screen [47], for
example, tested all pairwise combinations of 6, 000 genes resulting in almost 1 million
interactions. Such maps can be used to study the large-scale organization of functions
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in a cell [47], identify the hierarchical organization of specific biological processes [48],
or generate hypotheses on the function of uncharacterized genes [49].

10.2.3 Disease Networks

Disease networks are a powerful framework for systematically investigating the
diverse relationships among diseases. Such relationships exist on the molecular
level (e.g., common genetic origin), on the phenotypic level (e.g., similar clinical
manifestations) and on the population level (e.g., frequent co-occurrence in patients).
A first comprehensive map of the human “diseaseome” was presented in [11], where
1,377 diseases were linked by shared genetic associations reported in the OMIM
database [50] (see Box 10.6). The resulting network showed clearly that diseases can
rarely be viewed as isolated quantities, each with a distinct genetic origin, but fall
into highly connected clusters of disease groups with overlapping molecular roots.
It was also found that diseases that are more central within the disease network
tend to be more prevalent and have higher mortality rates [51]. The genetic overlap

Box 10.6: Disease networks
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among diseases also extends towards physical interactions among the respective gene
products, as well as similar gene expression profiles.

Similar results were obtained in a disease network in which diseases were linked
by the similarity of their clinical manifestations [52] that were extracted from a large-
scale screen of the biomedical literature and the annotated Medical Subject Headings
(MeSH) metadata [53]. Confirming the strong correlation between the similarity of
the symptoms of two diseases, the number of shared genetic associations and the
extent to which their corresponding proteins interact, the study further revealed that
the diversity of the clinical manifestations of a disease can be related to the degree
of localization of the associated genes on the underlying protein interaction network.
More detailed analyses that compared disease networks of different disease classes
(e.g., complex diseases, Mendelian diseases, or cancer) and protein interaction net-
works identified interesting differences between diseases with different inheritance
modes [54, 55, 56].

Networks can also be used to study comorbidity, i.e., the tendency of certain dis-
eases to co-occur in the same patient. A disease network extracted from over 30 million
patient records revealed that disease progression patterns of individual patients can
be related to topological properties of the respective diseases within the co-morbidity
network, for example, peripheral diseases tend to precede more central diseases [57].
These central, highly connected diseases are in turn associated with a higher mortality
rate. More recently, differences in disease progression patterns that are related to
age and sex have been characterized [58]. Co-morbidity networks have been used to
address a wide range of further biomedical challenges, from drug repurposing [59]
to the identification of potential drug side-effects [60], from biomarker identifica-
tion [61] to approaches how to disentangle genetic and environmental factors of
diseases [62].

10.2.4 Social Networks

A third important application of networks in medicine addresses the spread of conta-
gious diseases, such as viral or bacterial infections (Box 10.7). Mathematical models of
disease spreading go back as far as the year 1760, when Daniel Bernoulli formulated
the first analytical method for quantifying the effectivity of inoculation against small-
pox [64] (see Box 10.8 for an overview of important epidemiological models). Some 240
years later, the rise of complex networks made it possible to add a key ingredient to
such models, namely realistic topologies of the networks on which diseases propagate,
in particular global transportation maps and networks of social interactions [63] (see
Box 10.7). Detailed information on interactions between humans on a local scale and
on worldwide travel patterns is crucial for accurate predictions of the spatio-temporal
spread of infectious diseases. Historically, the mobility of humans was largely confined
by geography, such as rivers or mountains that could not be crossed easily. Such
geographical borders naturally confined the propagation of epidemics. In present day,
however, where both humans and goods can easily and quickly travel worldwide via
air traffic, not even oceans can limit contagions [10]. As a consequence, an infection
that started in a remote rural region may quickly propagate all over the world once
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Box 10.7: Networks of disease spread

Global transportation map

Local contagion map

Global air traffic plays a major role in the spread of epidemic disease across
the world. Locally, infectious diseases, but also personal traits like happiness
or habits like smoking, are transmitted through social interactions. These
interactions can occur, for example at home or at work, which can be
represented as a bipartite network that can be mapped to a person-to-person
network (illustration adapted from [63]).

it has reached an airport, leading to much faster, much wider, and seemingly more
erratic patterns of global epidemics.

10.2.4.1 Transportation Networks
Network-based epidemiological models that incorporate the structure of worldwide
transportation networks can shed light on the complicated propagation patterns
observed in recent pandemic outbreaks, help identify the source of an outbreak, pre-
dict future highly affected areas, or design most effective immunization or prevention
strategies [67, 68]. Examples for recent outbreaks of infectious diseases that were
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studied with the help of network models include the SARS pandemic in 2003 [69],
the H1N1 outbreak in 2009 [70], the ebola crisis of 2015, or the spread of HIV in the
Philippines [71].

Like many other real world networks, air-traffic networks have been found to be
approximately scale free [72]. Scale-free networks are therefore the prime model for
analytical studies of epidemic outbreaks and for the analysis of real data from past
and current epidemics [73]. Important global properties of a pandemic are directly
linked to the structure of the underlying networks. For example, the characteristic
(super-) hubs of scale-free networks can often be identified with large airports that
play an important role in the spread of a disease, both through the large number of
people gathering at such airports and through the large number of destinations that
they serve. Indeed, scale-free networks are generally more prone to global infections
than more regular network structures that do not exhibit the “small word effect.”
The critical spreading rate at which an infection is likely to propagate through the
entire network is given by the ratio between the average degree and its variance. In
large scale-free networks with degree distribution P(k) ∼ k−γ, the variance goes to
infinity for power coefficients γ < 3. The critical spreading drops to zero in this case,
meaning that a local infection is likely to become global, even for small infection
rates [74].

10.2.4.2 Social Contagion
Approaches used to elucidate large-scale properties of infectious disease outbreaks
can also be used to study the dynamics of social interactions, such as the spread
of ideas, attitudes, and behaviors [75]. Reflecting the complexity of social rela-
tionships, links in social networks may represent, for example, friendship, family
relationships, common work-place, shared political preferences, and many more.
Collectively, these relationships not only define and shape our social relationships,
but may also have concrete medical impact as shown in a seminal work on the spread
of obesity [9]: The authors quantified how changes in body-mass index correlated
among members of a social network of friends and family. Surprisingly, they found
that obesity preferentially spreads through close social relationships. This effect is
strong between men and between women, but almost negligible between man and
woman. Similar studies were carried out to dissect the social component of starting
to smoke [76] or of general happiness in life [77]. The results suggest that people
surrounded by many happy people and those who are central in the network are
more likely to become happy in the future. This effect was not observed among
co-workers [77].

Recently there have also been efforts to combine global disease dynamics of trans-
portation networks with contagion occurring on social networks. Multiplex or mul-
tilayer networks provide the analytical platform for combining several networks [78,
79, 80]. In such multilayer networks, different types of contact (at work, in the super-
market, at the airport) can be represented by distinct layers. It has been shown that the
epidemic threshold is determined by the largest eigenvalue of the contact probability
matrices of the different layers [78]. A powerful tool to study the full dynamics of
spreading phenomena on networks, both simple or multilayered, are reaction diffu-
sion processes [81].
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Box 10.8: Basic mathematical models of disease spread

S I

S I R

S I R

S I RE

SIS

SIR

SIRS

SEIR

λ

λ

λ

m

γ

γ

γη

γ

λ

Classical epidemic models aim to determine the fraction of a population
affected by a contagious disease over time. Most models represent the
disease-status of an individual by one of three basic states [65]:

The susceptible (S) state, in which an individual can contract a disease. The
infected (I) state, in which the individual carries the disease and can
transmit it. The recovered (R) state, in which an individual is immune to
repeated infections. More advanced models may also include further states,
such as the exposed (E) state, in which an individual is already infected, but
cannot yet transmit the disease. The microscopic dynamics of
epidemiological models is given by transitions between the different states,
macroscopic properties emerge from the interaction of many individuals.
The most widely studied models are the following:

The SIS model, in which the recovery of a disease does not convey
immunization, but renders an individual susceptible again, for example the
common cold. The dynamics of the system are completely determined by the
two rates of infection λ and recovery γ , respectively.

In the SIR model [66] susceptible individuals become infected with rate
λ and recover with rate γ . This system exhibits an epidemic threshold α = λ

γ ,
such that for α ≤ 1 a disease will die out in the long run, whereas for α > 1 it
will persist in the population.

The SIRS model contains an additional temporary immunity state, so
that recovered individuals become susceptible again with rate µ. The impact
of the incubation periods can be modeled by adding an exposed state (E), in
which an individual has been infected, but is not yet infectious.

In network-based generalizations of these models, the individuals are
identified with nodes and diseases spread along the connections of the
network. In the simplest case this can be done by substituting the infection
rate λ with a degree-dependent rate λ = λ(k), so that the likelihood of
becoming infected grows with the number of infected neighbors.
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10.3 Interactome Analysis
As we have seen above, there exists a great variety of molecular interaction networks
that can yield important insights into disease mechanisms. In the following, we will
focus on “interactome networks” containing only physical interactions. The basic tools
and concepts apply readily to other types of networks, however.

10.3.1 Interactome Construction

A large number of publicly available databases provide comprehensive collections
of interactions between proteins and other relevant biomolecules (e.g. protein–DNA,
protein–RNA, enzyme–metabolite interactions) in human, but also in other species,
see [82] for a compendium of available resources. Among the most comprehensive,
actively maintained and widely used databases are STRING [83], BioGRID [84], and
MIntACT [85]. Note that they may also contain interactions that are not strictly physi-
cal, for example co-expression or other types of functional relationships among genes
and their products. A well curated collection of only physical interactions has recently
been published in the HIPPIE database [86]. Each interaction in HIPPIE is annotated
with the original publication(s), details on the experimental protocol and an aggre-
gated confidentiality score, thus allowing the user to adapt the final interactome net-
work to specific requirements and preferences.

Generally, one can distinguish between three main sources of PPIs: (1) interac-
tions curated from the scientific literature and typically derived from small-scale
experiments, for example using co-immunoprecipitation, X-ray crystallography, or
nuclear magnetic resonance. (2) Interactions from systematic, proteome-scale map-
ping efforts. The two main techniques are yeast two-hybrid (Y2H) assays [87] and
binding affinity purifications coupled to mass spectrometry (MS) [88, 89], which pro-
duce rather different, yet complementary results (see Box 10.2). Y2H can map out
precise, binary protein interactions, yet without biological context. It is not guaranteed,
for example, that an experimentally observed interaction is biologically relevant, or
whether the two respective proteins are in fact never expressed at the same time in the
same cell. Co-complexes observed in MS experiments, on the other hand, are derived
from a specific biological sample, yet are more difficult to translate into precise pair-
wise interactions [14]. (3) Interactions from computational predictions, for example
based on protein structure [90] or other genomic data [91]. All three sources of PPIs
have strengths and limitations in terms of comprehensiveness, noise and biases [92],
such as biases in the selection of protein pairs [93] or experimental biases, for example
towards highly expressed genes [87].

10.3.2 Basic Interactome Properties

Figure 10.1 gives a visual impression of a manually curated interactome from [16]
and summarizes its global topological properties. In total, it contains 13, 460 proteins
connected via 141, 296 physical interactions, so on average each protein has about 21
interaction partners. Characteristic not only to this, but also to many other complex
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Figure 10.1: (a) A global picture of the interactome (original data curated by [16], figure
adapted from [94]). The network consists of 13,460 proteins and 141,296 interactions that
have been collected from different sources with various kinds of physical interactions,
including binary interactions from systematic yeast two-hybrid screens, protein complexes,
kinase-substrate pairs and others. (b) The overall topology is characterized by a highly
heterogeneous degree distribution that follows approximately a power-law. (c) Other
important structural properties of the interactome.

networks, is the high heterogenity among the degrees of the nodes, i.e., in the number
of connections they have to other nodes differs widely (see Box 10.9 for an overview
of important terms in network science). While the vast majority of proteins have only
few neighbors (more than 2, 000 have only a single link), there is also a considerable
number of nodes with hundreds of connections, such as GRB2 (degree k = 872),
YWHAZ (k = 502) and TP53 (k = 450), so-called “hubs.” The histogram of all nodes’
degrees shows “scale-free” properties,

1
i.e., P(k) follows approximately a power-law

P(k) ∼ k−γ . As laid out in more detail in Chapter 3, the broad degree distribution and,
as a consequence, the presence of hubs have a profound impact on many network
properties. Hubs serve as shortcuts that connect distinct parts of the network, resulting
in a network property often referred to as the “small word effect” [96] (in some cases of
scale-free networks even “ultra-small” [97]). In the interactome, for example, it takes
on average less than four steps (〈d〉 = 3.6) to reach any other protein from any given
starting point. This high degree of connectedness is also associated with a remark-
able resilience of the overall network structure against random failure of individual
nodes and/or edges. Scale-free networks can maintain global connectedness even
upon removal of a considerable fraction of nodes and edges [98, 99, 100, 101]. The
flipside of this robustness towards random failure, however, is a particular vulnera-
bility towards targeted attack against the hubs [102]. For the interactome, for example,

1
How accurately this and other networks can be described by a power-law is subject to some debate,
see [95] for a thorough discussion. For our purposes, however, the precise mathematical nature of
the degree distribution plays only a secondary role.
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Box 10.9: Basic topological characteristics of networks

Shortest
path

High
betweenness 

node

Community

Motif

Hubs

• The degree of a node is the number its direct neighbors. The degree
distribution across all nodes is an important global network
characteristic.

• Scale free networks are characterized by a degree distribution that
follows a power law: While most nodes have few neighbors, there are
also a few highly connected hubs with a large number of neighbors.

• A path between two nodes is a sequence of links connecting the two. The
minimum number of links needed to connect the two is called shortest
path length and represents their network distance.

• Centrality measures quantify the topological importance of a node within
the network. There are different types of centrality measures, the
betweenness centrality, for example, quantifies how many shortest paths
of the full network cross through a certain node.

• Clustering describes a tendency observed in many biological (and other)
networks that two neighbors of a node are often also connected to each
other, thus forming a triangle.

• Motifs are small recurrent subgraphs in a network that occur particularly
frequently.

• Network communities are groups of tightly interconnected nodes that
have more connections among themselves than to the rest of the network.

the removal of ∼ 30% of the most highly connected nodes is sufficient to completely
destroy the network, leaving only disconnected fragments.

10.3.3 Interactome Topology and Biological Function

The degree of connectedness of a protein is directly related to its biological importance:
As first shown for the yeast Saccharomyces cerevisiae [103], and later confirmed also in
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human cell lines [49], the products of essential genes, i.e., genes that are critical for the
survival of an organism, tend to have a high number of interaction partners and take
on central positions in the interactome. In contrast, genes whose loss of function can
be more easily compensated for tend to have fewer interactions and are situated at the
periphery of the interactome.

Interactome networks have also important structural features that go beyond the
degree (or other measures of centrality) of individual nodes: “Network modules,”
i.e. groups of nodes that are densely interconnected among themselves, but sparsely
connected to the rest of the network, can often be identified with proteins that jointly
perform a certain function [104, 105, 106]. This relation between functional similarity
of genes (see ahead to Box 10.14) and their closeness in interactome networks has
also been found for shared pathway membership, co-localization in the same cellular
component or co-expression [87, 89]. The local aggregation of cellular function within
interactome networks represents a fundamental biological organization principle that
forms the basis for many important applications, ranging from the prediction of pro-
tein function to disease gene identification and drug target prioritization.

10.3.4 Diseases in the Interactome

The observation that functionally similar proteins are often densely interconnected
can be generalized also to other relationships among genes, in particular to shared
disease associations. Genes that are implicated in the same disease tend to have more
interactions among each other than expected for completely randomly distributed
genes [107]. Note, however, that this does not necessarily imply particularly densely
interconnected network patterns as those observed for genes involved in the same
function. Indeed, dysfunction is typically distributed among several, often only loosely
connected functional modules within the interactome [108]. A systematic study on
∼ 300 complex diseases showed that currently available interactome networks offer
sufficient coverage to identify these “disease modules,” thereby confirming a funda-
mental hypothesis of interactome-based approaches to human disease [16]. The spe-
cific topological properties of disease modules differ between classes of diseases (e.g.,
complex diseases, Mendelian diseases, or cancer) and inheritance modes (autosomal
dominant or recessive). Cancer driver genes are often highly central, while recessive
disease genes tend to be more isolated at the periphery of the interactome [56].

10.3.5 Localization in Networks

As shown above, network-based localization of (dys)function is a central part of many
interactome-based studies. In network science, the identification of densely connected
groups of nodes is known as “community detection” [109]. While numerous algo-
rithms exist for this task, they are usually not well suited for the identification of
only weakly connected local network neighborhoods such as disease modules [108].
In order to quantify the tendency of a given set of disease genes to be localized in
a certain neighborhood, we first need to inspect different possibilities for measuring
distances among a set of nodes in a network. The simplest way to summarize the
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localization of a set S consisting of s nodes into a single quantity is to compute the
network distance dij for all

(S
2
)

= s(s−1)
2 pairs of nodes i and j and take the average:

dav(S) = 2
s(s−1)

∑

ij

dij , (10.1)

which can be interpreted as a diameter of the set S. As a consequence of the “small-
world” nature of many relevant networks, differences in the absolute values of dav
for different gene sets are often relatively small. Several variations and extensions of
Equation 10.1 have therefore been proposed [110]. For example, instead of taking the
average over all possible node pairs, one can consider only the distance to the next
closest node, respectively:

dclose(S) = 1
s

∑

i

min
j∈{S\i}

(dij) . (10.2)

This gives different results as dav in situations where a module is split into several
“islands,” for example due to network incompleteness. Whereas dclose correctly reflects
the high degree of localization within the individual islands, it is diluted when the
distances of all pairs are averaged. Other variations include adding weights to dif-
ferent path lengths dij, see Box 10.10 for more examples. Complementary to such
distance-based measures, one can also use connectivity-based measures to determine
the degree of connectedness among a set of nodes. The simplest way is to consider the
number of links between them. A perhaps more intuitive measure is given by the size
of the largest connected component, i.e., the highest number of nodes that are directly
connected to one another. We can apply tools from statistical physics to understand
many of its properties analytically [111]. It is, however, relatively sensitive to data
incompleteness. In extreme cases, a single missing link in the network or a missing
node from the set S, e.g., a protein, whose disease association is yet unknown, can
fragment the connected component into isolated nodes.

The concepts introduced above can be readily extended to measure distances
between two node sets S and T, for example, for quantifying the interactome-based
similarity between two diseases [16]. The equivalent of Equation 10.1, i.e., the average
over all possible pairs of nodes between two node sets is given by

dav(S, T) = 1
s

∑

i∈S

1
t

∑

j∈T

dij . (10.3)

Similarly to different linkage methods in hierarchical clustering algorithms, there are
different ways to compute the distance between two sets of nodes, see Box 10.10 for a
number of frequently used options.

10.3.6 Randomization of Network Properties

By themselves, the absolute values of localization or distance as introduced above
bring few insights. To judge whether an observed clustering of a particular node set
is significant, we need to compare it to suitable random models. Many quantities that
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Box 10.10: Distance measures in networks

Localization Distance between two node sets S and T

Connectivity-based

Distance-based

There are different ways to quantify the degree of “localization” of a given
set of nodes S, i.e., whether or not they aggregate in a certain network
neighborhood. Distance-based localization measures are based on different
averages over pairwise distances dij between all nodes in the set, e.g.:

dav(S) = 2
s(s−1)

∑

ij

dij (10.4)

dclose(S) = 1
s

∑

i

min
j∈{S\i}

(dij) (10.5)

dexp(S) = − 2
s(s−1) ln

∑

ij

exp
(
−dij

)
(10.6)

These measures can be generalized to two node sets S and T:

dav(S, T) = 1
s

∑

i∈S

1
t

∑

j∈T

dij (10.7)

dclose(S, T) = 1
s+t

[ ∑

i∈S

min
j∈T

(dij) +
∑

i∈T

min
j∈S

(dij)
]

(10.8)

dexp(S, T) = − 1
s

∑

i∈S

1
t ln

∑

j∈T

exp
(
−dij

)
(10.9)

Nodes that are common to both sets S and T are usually taken to contribute
with dij = 0 in the above formula. Instead of averaging over all pairs of
nodes between S and T one can also define a center for each and use the
distance between them:

dcenter(S, T) = d (center(S), center(T)) (10.10)

Another option is the separation parameter introduced in [16]:

sep(S, T) = dclose(S, T) − 1
2
(
dclose(S) + dclose(T)

)
(10.11)

Negative values sep(S, T) < 0 suggest overlapping network modules,
while sep(S, T) > 0 indicates separated modules. Note, however, that the
separation parameter is not an intensive quantity, i.e., its magnitude
depends on the number of nodes in the respective sets.
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occur in the context of network analyses do not follow normal (Gaussian) distribu-
tions, such as the scale-free degree distribution, and therefore require particular care
when choosing statistical tests. Comparisons with ensembles of randomized networks
obtained from simulations are often the best choice. In general, we can distinguish
two types of randomizations: (1) Randomizing the network topology, for example
the interaction partners of a particular protein, and (2) randomizing node attributes,
such as the disease associations of a group of genes.

10.3.6.1 Randomizing the Network Topology
To exclude that a seemingly interesting observation, for example, the local aggregation
of disease genes in the interactome, could be a generic consequence of the overall
topology of the underlying network, we need to compare our results from the orig-
inal network with those obtained from networks with randomized topology. There
are numerous randomization procedures. Which one is most suited, depends on the
particular reference that is needed for a specific observation. The simplest method is to
fix only the number of nodes N and the number of links L of the original network and
to redistribute the links completely at random among the nodes. As shown in Chapter
3, this procedure results in an Erdős-Rényi network. Many properties of Erdős-Rényi
networks can be calculated analytically and without extensive computer simulations,
for example the expected clustering or the size of the largest connected component.
However, the topology of most real world networks differs substantially from the one
of a corresponding complete random graph, for instance hubs are completely absent
in the latter. Hence, comparisons between the two are rarely meaningful and can in
fact be rather misleading.

A more adequate reference that is suitable for most applications is given by
networks in which the number of neighbors of every node are kept constant, but the
specific interaction partners are completely randomized. This ensures that important
structural features, in particular the degree distribution and presence of hubs, are
preserved in the ensemble of randomized networks. Box 10.11 introduces the two
main algorithms that are used to generate such randomized networks: The “switching
algorithm” [112], is an iterative method, where at each step two links are selected
at random and their endpoints are swapped. For example, the links connecting the
nodes n1 ↔ n2 and n3 ↔ n4, respectively, can be reconnected to n1 ↔ n3 and n2 ↔ n4.
Note that this may result in multiple links between two nodes or self-loops. In an
application where such links are not meaningful, the original link pairs should be
restored. As we repeatedly apply this procedure, the interactions of the network
become more and more randomized, without altering the degree of each node. A
drawback of this simple method is that no precise criteria exist as to how many
switches should be performed to ensure a good mixing. Empirical results suggest
100 L switching attempts, which can be computationally rather expensive for large
networks [113].

A more efficient method for generating random networks with a prescribed degree
sequence is to apply a variation of the “configuration model” [114, 115]. The second
algorithm introduced in Box 10.11 is the “matching algorithm,” in which all links of
a given network are broken at once and then randomly reassembled one by one. As
in the switching algorithm, the potential creation of self-loops and multiple links may
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Box 10.11: Network randomization

Randomizing the network topology

randomly select
two links

iterate (≈100 L times)

split links into
two stubs

split all links
into two stubs

randomly select
two stubs

connect stubs to
new link

iterate until all stubs are connected

switch endpoints to
create new links

Original network Randomized network

There are two frequently used algorithms to generate an ensemble of
randomized networks with fixed degree distribution. In the switching
algorithm, two links are chosen at random and their endpoints switched.
Repeating this procedure will eventually lead to a fully randomized version
of the original network. In the matching algorithm, all links of the given
network are broken at once and then one by one reconnected at random.

Randomizing node attributes

Original node attributes

Ensemble of networks with fully randomized node attributes

Ensemble of networks with degree preserved randomization

The most basic procedure to randomize node attribues (e.g., disease
associations of genes) is to redistribute them completely at random on the
network. For more restricted random controls, one can also keep specific
topological properties of a node attribute constant, in particular the degree of
the annotated node. In this case, only nodes with the same (or at least
similar) properties are allowed choices.
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Figure 10.2: Network randomization. (a) Comparison of the clustering coefficient of the
interactome (see Figure 10.1) with distributions obtained from complete randomization and
degree-preserving randomization. (b) Comparison of the size of the largest connected
component (lcc) of proteins associated with multiple sclerosis in the interactome with two
distributions obtained from full and degree preserving randomization, respectively. (c)
Sorted z-scores of the lcc size of 299 diseases in the interactome. (d) Significance and effect
size of the observed localization dav(S) of 299 diseases compared to randomized gene sets.
(Data from [16].)

need to be prevented in certain applications. Note that in this case the ensemble of the
generated networks is no longer completely unbiased, but the effects are usually small
and can often be neglected for large networks [113].

Figure 10.2a shows an application of the two randomization strategies to evaluate
the observed mean clustering coefficient 〈C〉 = 0.17 of the interactome. As expected,
we find excellent agreement between the values observed in 10,000 simulations of
a full random model corresponding to an Erdős-Rényi network and the respective
analytical value 〈C〉 = p = 2L

N(N−1) = 0.0016. Simulations of the degree preserving
matching algorithm yield the considerably higher mean value 〈C〉 = 0.03, which is
still significantly smaller than the originally observed clustering, indicating that the
clustering of the interactome could not have emerged by chance.

10.3.6.2 Randomizing Node Properties
Instead of rewiring the structure of the network itself, it is often useful to consider
randomizing certain node attributes, for example disease associations of individual
genes in the interactome. In the simplest case of random label permutation, we detach
the attribute of interest from their original nodes and redistribute them completely at
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random among all nodes of the network. For example, to investigate the connectivity
of Nd disease proteins in terms of their largest connected component (lcc), we select the
same number of proteins randomly from the network and measure their lcc. Repeating
this procedure yields a random control distribution that can then be used to determine
the statistical significance of the original lcc. According to data from [16], multiple
sclerosis has Nd = 69 known associated proteins in the interactome that form an lcc
of size S = 11. Figure 10.2 (b) shows the lcc distribution for 69 randomly picked
proteins from 10,000 simulations. The distribution has a mean of 〈Sfull

rand〉 = 2.9 and
a standard deviation of σ = 1.4. The statistical significance of the observed lcc size can
be quantified using the z-score

z-score =
S − 〈Sfull

rand〉
σ

, (10.12)

yielding z-score = 5.8. For normal distributions, z-scores > 1.65 correspond to a
p-value < 0.05 (corresponding to a right-sided test, left- or two-sided tests are also
possible) and are considered to be statistically significant. The empirical p-value, i.e.,
the fraction of all random simulations with Sfull

rand ≥ S was found to be p-value = 0.003.
Taken together, we conclude that the connected component for multiple sclerosis is
unlikely to have emerged by chance or as a trivial consequence of the network topol-
ogy, indicating the potential presence of a disease module.

10.3.6.3 Degree Preserving Label Permutation
There are also stricter attribute randomization procedures that impose certain con-
straints on the allowed set of nodes among which an attribute can be distributed.
Prominent cancer genes, for example, tend to have a large number of interactions in
literature-curated interactome networks, simply because they have been investigated
more intensively than other genes. To test whether the high connectivity among such
genes can be explained by their high degree alone, we need to generate random
distributions of node attributes that maintain the degree of the individual nodes
carrying the original annotation. Note that swapping only between nodes of exactly
the same degree will be problematic for high-degree nodes, as there may be only few,
or even a single node in the entire network that have a certain degree. It is therefore
useful to relax the requirement of having exactly the same degree and work with
bins of nodes with comparable degree instead. Figure 10.2 (b) shows the distribution
Sdegree

rand obtained using such an approach. The mean value 〈Sdegree
rand 〉 = 5.1 is larger

than the one obtained from the full randomization, but still significantly smaller than
the value S = 11 from the original data (z-score = 3.1, empirical p-value = 0.009),
indicating that the high degree of the disease proteins alone does not explain their
observed high connectivity.

These randomization procedures can also be applied to evaluate the distance-
based localization measures introduced above, for example dav(S). From each random
simulation we can extract drand

av and then compute the mean 〈drand
av 〉 and correspond-

ing standard deviation σ
(

drand
av

)
. In analogy to the z-score introduced above, we

can use Glass’ % to quantify the effect size of any difference observed between
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the true value dav(S) and the values obtained in the respective randomization
simulations:

% = dav(S) − 〈drand〉
σ

(
drand

) . (10.13)

The statistical significance of an observed difference in the respective means dav(S)

and 〈drand〉 can be obtained from a Mann–Whitney U test, for example. Figure 10.2
(c–d) shows the results for the randomization valuation of the localization observed
among 299 diseases on the interactome.

Numerous more advanced randomization procedures exist that can preserve
topological features beyond the degree distribution. For example, there are algorithms
to generate randomized networks that maintain the mean clustering coefficient
of the original network [116] or the correlation structure between the degrees of
adjacent nodes [117, 118]. Another level of sophistication needs to be applied when
randomizing metabolic networks, where simple link rewiring would likely generate
reactions that are biochemically impossible [119, 120].

10.4 Disease Module Analysis

10.4.1 Overview

Sequencing technology has accelerated the discovery of disease associated genetic
variations significantly. For most diseases, however, we are still far from a complete
understanding of the underlying molecular mechanisms. Most complex diseases, such
as cardiovascular diseases, cancer, or diabetes mellitus (the three most frequent causes
of death worldwide), involve hundreds of genes and their complex interactions. It has
been estimated, for example, that more than 2,000 genes are involved in intellectual
disabilities, yet our current knowledge includes only around 800 genes [121]. The
situation is similar for rare Mendelian disorders. Estimates for the total number of rare
genetic disorders range from 6,000 to 8,000, a majority of which likely to be caused by
a single genetic aberration. Despite this simple genetic architecture, less than half of
all suspected diseases and corresponding disease genes are currently known.

Network-based disease modules offer a general framework for investigating how
the pathobiology of a particular disease may arise from a combination of many genetic
(but also epigenetic, environmental, behavioral etc.) variations. Succesful applications
range from rare Mendelian disorders [3], to cancer [4] and other complex disorders,
like metabolic [5], inflammatory [42], or developmental diseases [122]. A disease mod-
ule is loosely defined as the comprehensive set of cellular components associated with
a certain disease and their interactions. More specifically, the term refers to a connected
subgraph of the interactome, whose perturbation causes the disease [18]. Figure 10.3
gives an overview of the disease module analysis process. The first step is to construct
an interaction network and collect genes known to be associated with the particular
disease of interest. These “seed genes” will serve as starting point for network-based
gene prioritization algorithms. The resulting network module can then be validated
and enriched with various additional datasets that will also be used in the biological
interpretation of the final disease module.
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Figure 10.3: The basic steps of a disease module analysis process: First, interactome and
seed gene data are collected. Next, a network-based disease gene prioritization method is
employed. The performance of the predictions is then validated through comparison and
enrichment with independent external data. In the last step, the module is explored for
important biological pathways, overlap with other disease modules etc. (Figure adapted
from [123].)

10.4.2 Seed Cluster Construction

The first step of the disease module analysis is the construction of a seed cluster, i.e.,
the curation of a suitable molecular interaction network and a set of genes known to be
associated with the particular disease of interest. Box 10.12 lists a number of resources
that may serve as a starting point.

10.4.2.1 Interactome Construction
As introduced above, one can make a broad distinction between physical interac-
tions, e.g., protein co-complexes or binary protein–protein interactions, and functional
interactions, e.g., genetic interactions or co-expression. By definition, physical inter-
actions represent a direct molecular relationship, thus facilitating the identification
of causal molecular mechanisms. Functional interactions, on the other hand, offer a
much broader spectrum of potentially relevant associations between genes and gene
products and can often be more easily adapted to a particular diseases, for example
by incorporating tissue-specific expression data. Incorporating such information can
considerably improve disease gene prioritization [124, 125, 126], see also Chapter 11.
The choice of interaction type and used data sources will affect coverage (number of
contained genes/proteins and their interactions), biases (for example, towards well-
studied genes) and signal to noise ratio (number of false positive interactions) of the
final interactome. Physical interactions offer more control over biases and signal to
noise ratio, but often at the cost of lower coverage. Biases can be reduced by rely-
ing only on data obtained from systematic high-throughput studies, e.g., from [87,
89]. False positive interactions can be reduced by filtering for interactions that have
been reported by several studies and by different experimental techniques. Several
databases, such as HIPPIE [86] or STRING [83] offer integrated interaction scores for
this purpose.



N E T W O R K M E D I C I N E 439

Box 10.12: Resources for disease module analyses

Interactome databases:

BIOGRID thebiogrid.org
BioPlex bioplex.hms.harvard.edu
HIPPIE cbdm-01.zdv.uni-mainz.de/∼mschaefer/hippie/
IntAct www.ebi.ac.uk/intact
MatrixDB matrixdb.univ-lyon1.fr
MINT mint.bio.uniroma2.it
STRING string-db.org

A more comprehensive list can be found on EBI’s PSICQUIC view that also
offers programmatic acces, see www.ebi.ac.uk/Tools/webservices/
psicquic/view/

Disease genes:

DGA dga.nubic.northwestern.edu
GWAS Catalog www.ebi.ac.uk/gwas
Gene2Mesh gene2mesh.ncibi.org
HGMD hgmd.cf.ac.uk
OMIM omim.org
OrphaNet www.orpha.net

Integrated and functional web-based services:

DisGeNet disgenet.org
GeneMANIA genemania.org
HumanBase hb.flatironinstitute.org

Ontologies:

Disease ontology (DO) disease-ontology.org
Gene ontology (GO) www.geneontology.org
Human phenotype
ontology (HPO)

human-phenotype-ontology.github.io

Mammalian phenotype
ontology (MPO)

www.informatics.jax.org/vocab/mp ontology

A comprehensive list of biological ontologies can be accessed from EBI’s
Ontology Lookup Service under https://www.ebi.ac.uk/ols/ontologies
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10.4.2.2 Seed Gene Selection
There are numerous resources that collect genes associated with diseases (see Box
10.12). Note that the term “disease associated gene” itself is only loosely defined and
covers a wide spectrum from high penetrance dominant mutations to GWAS variants
of rather small effect size or genes observed to be differentially regulated in patient
subgroups. Similarly, the level of evidence for reported disease associations may differ
greatly, from rare gene variants with a known and experimentally validated functional
mechanism, to genes with unknown mechanism, yet repeatedly confirmed in multiple
patient cohorts, to rather speculative associations inferred solely from text mining.

10.4.2.3 Evaluation of the Seed Cluster
Both the interactome construction and the seed gene selection involve a certain trade-
off between using only highest-confidence data and achieving the highest possible
coverage. There is no simple and universally applicable solution to this challeng-
ing problem that requires a certain amount of experimentation, ideally guided by
a domain expert for the specific disease under study. From a network perspective,
however, localization measures introduced above can be used as a rough indicator
whether a particular combination of interactome and seed gene data meets the min-
imal criteria for a meaningful disease module analysis. Figure 10.4 shows the seed
cluster for an asthma disease module from [123]. From a total of 129 seed genes that
could be mapped to the interactome, 37 form the largest connected component, indi-
cating a highly significant (z-score = 10.7) network localization. This suggests that the
seed cluster has sufficient “signal” pinpointing the network neighborhood of the com-
plete asthma module that can then be identified through a network-based expansion
algorithm.

10.4.3 Network-Based Disease Gene Prioritization

Network-based disease gene prioritization methods build on the observation that
genes associated with the same disease tend to be localized in the same interactome
neighborhood. We can therefore use the network topology to extrapolate from a given
set of seed genes to identify other genes that are likely to be also involved in the
disease or at least strongly affected by the local interactome perturbation. Over the
last years, numerous algorithms have been developed for this purpose. They can
be broadly classified into three major categories: (1) connectivity based methods (2)
path-based methods and (3) diffusion-based method (see Box 10.13).

10.4.3.1 Connectivity-Based Methods
Connectivity-based methods exploit the observed propensity among disease genes to
interact with each other. Early pioneering approaches considered all direct neighbors
of seed genes as potential candidate genes [127]. As more and more interactome and
seed gene data become available, such approaches tend to generate an increasing
number of false positives. More recent algorithms therefore utilize more advanced
connectivity patterns, such as graphlets [128], or take the degree heterogeneity of the
interactome explicitly into account [129]. Indeed, hubs in the network are expected to
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Largest connected component
(a)

(b)

Figure 10.4: Seed cluster of an asthma disease module analysis from from [123]. (a) Of the
129 expert curated seed gene, 37 form the largest connected component, the rest are
scattered throughout the interactome. (b) The size of the largest connected component is
highly significant (z-score = 10.7) compared to random expectation.
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Box 10.13: Network-based disease gene prioritization

Original
seed cluster

Extended 
module

After nth iteration, the Determine p-value 
for each neighbor

new seed 
cluster

Optimize edges and nodes 
to include in the tree

Extended 
module

Vi
si

tin
g 

pr
ob

ab
ili

ty

Random walk with restart: 
at equilibrium

Nodes with visiting probability above cuto  
threshold are added in the module

Extended module

Vi
si

tin
g 

pr
ob

ab
ili

ty

cuto

Neighbor with lowest 
p-value added as seed 

1st neighbours

Intermediate nodes in the tree 
are added to the module

Connectivity-based: DIAMOnD

Path-based: Prize-collecting Steiner tree

Di usion-based: random walk with restart

Illustration of three different methodologies for network-based disease gene
prioritization: (1) Connectivity-based methods evaluate the direct neighbors
of seed genes. (2) Path-based methods evaluate candidate genes based on
their network distance to seed genes. (3) Diffusion-based methods use a
dynamical process to rank candidate gene according to how strongly they
are influenced by the seed genes.

also interact with a large number of seed genes without necessarily implying a disease-
association. To correct for these effects, the DIAMOnD algorithm [108, 123] evaluates
the significance of a given number of connections ks to s seed genes with respect to
the total degree k of a given candidate gene. In a network of size N, with s randomly
distributed seed genes, the probability that a gene with degree k connects to exactly ks
seed genes is given by the hypergeometric distribution

P(X = ks) =
( s

ks

)(N−s
k−ks

)

(N
k
) . (10.14)

The significance of a given number of connections is therefore given by the p-value

p-value =
k∑

n=ks

P(X = n) , (10.15)
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which can then be used to iteratively rank all genes in the network. Note that the
resulting disease module may consist of genes without direct connectivity to the initial
seed genes.

10.4.3.2 Path-Based Methods
Instead of using the direct connectivity to seed genes, candidate genes can also be
ranked according to their network distance to the set of seed genes (compare also with
Box 10.10). A versatile set of algorithms that combines different distance measures
for prioritizing candidate genes has been proposed in [130]. Instead of ranking the
genes iteratively, it is also possible to search for an optimal set of candidate genes
that collectively minimize the path lengths between the seed genes. Such approaches
often implement variations of minimum spanning tree (or “Steiner tree”) search algo-
rithms [131, 132, 133]. Basically, the algorithm will construct a tree consisting of a
minimum amount of edges while connecting all the seeds into a single cluster.

10.4.3.3 Diffusion-Based Methods
The methods described above rely only on the static topology of the network. It is also
possible to use dynamical models to explore the network neighborhood around the
seed genes for gene prioritization [3, 4, 134, 135, 136, 137]. Among the most widely
used dynamical models are diffusion processes, such as the random walk with restart
(RWR) [138]: Here, the seed genes serve as starting points for a random walk process
along the links of the network. At every time step, the walker either proceeds to a
randomly picked neighboring gene, or returns with restart probability r to one of the
seed genes. The restart ensures that the local neighborhood around the seed genes
is emphasized by the walker, otherwise all seed gene information would be lost in
the long run of the process. The frequencies with which the individual nodes in the
network are visited will eventually converge to a steady state and can then be used
to rank all genes in the network according to their “dynamical closeness” to the seed
genes. The process can be formalized as follows: Consider the vector pt whose ele-
ments pi . . . pN represent the probability of the walker visiting node i at time t. The
visiting probability at time t can be derived from the visiting probability at time t − 1
via

pt = Wpt−1 , (10.16)

where W is the so-called transition matrix and defined as the column normalized

adjacency matrix A with Wi,j =
Ai,j∑

i ki
. At time t0, only seed genes have (uniform)

non-zero probability p, as well after each restart, which happens at a rate r. Equation
10.16 then becomes

pt = (1 − r)Wpt−1 + rp0 . (10.17)

The steady-state solution for Equation 10.17 is given by

p∞ = r(I − (1 − r)W)−1p0 . (10.18)

The genes in the network can then be ranked according to the visiting probability p∞.
The restarting probability r can be used to adjust the influence of the seed genes on the
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diffusive process, from free diffusion (walker is not restricted by seed genes, r = 0) to
no diffusion at all (walker remains at seeds, r = 1).

10.4.4 Validation and Enrichment

After completion of the preferred candidate gene ranking procedure, we first need
to evaluate its performance. A second, closely related task is to determine a sensible
cutoff, i.e. how many ranked genes should be considered for the final disease module,
as most prioritization methods rank all genes in the network without offering an
intrinsic stopping criterion. There are two complementary approaches: (1) Estimating
the predictive power of the disease gene predictions using cross-validation methods.
(2) Comparison with independent biological data.

10.4.4.1 Cross-validation of Prediction Performance
In principle, cross-validation of disease gene prioritization algorithms works in the
same way as with other classification tasks (compare also with Chapters 6–8): For a
basic k-fold cross-validation, the set of seed genes is first randomly divided into k
groups (the special case where k equals the number of seed genes is often referred to
as “leave-one-out” cross-validation). One of the groups can then serve as the “test-set”
of true positives, while the remaining k−1 groups are used as modified seed gene pool.
The gene prioritization algorithm is then run on this modified pool to test how well
the method is able to retrieve the left out genes in the test set. Repeating this procedure
k times with each of the k groups serving as test set yields a statistic on the expected
average performance of the method. The choice of k determines the trade-off between
high bias (large k) and high variance (small k). An important difference to many other
classification tasks is the lack of clear true negatives, i.e., genes that we know not to
be involved in the disease. Several proxies have been proposed, for example essential
genes, genes of high genetic variability or manually curated genes that are unlikely to
be involved in a particular disease according to their expression patterns. These gene
sets can only offer approximations and remain necessarily incomplete, making the
interpretation of standard performance measures difficult, such as receiver operating
characteristic curves.

10.4.4.2 Enrichment with Independent Biological Data
A complementary approach for estimating the performance is to test for enrichment of
the ranked genes with independent biological data (see Box 10.12). Figure 10.5 shows
the biological enrichment of the top 400 ranked genes from an asthma disease module
analysis [123]. To compare the biological signal of the ranked genes with the one
of the manually curated seed genes, the authors chose a sliding window of ranked
genes with the same size of the seed genes and within each window computed the
enrichment with five different datasets: (1) Genes differentially expressed in a relevant
case/control study, (2) genes participating in expert curated relevant biological path-
ways, (3) genes contained in general pathways that were found enriched in the seed
genes, (4) genes annotated to similar biological processes as the seed genes according
the gene ontology (GO, see Box 10.14) and (5) genes that are known to be implicated in
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Figure 10.5: Biological enrichment of the asthma disease module in [123]. The first two
columns show the number (and the corresponding statistical significance, respectively) of
the identified candidate genes that were found in the different validation datasets indicated
in the third column. The values for the candidate genes are show in orange, the values for
seed genes and random expectation in red and green, respectively.

diseases that show high co-morbidity with asthma. A comparison of the enrichments
across different datasets allows for an evaluation of the general plausibility of the
ranked genes, but also for an estimation of the border of the disease module.

10.4.5 Biological Interpretation

The data collected for the performance evaluation can further be used for an integrated
analysis of the biological mechanisms represented in the disease module. Figure 10.6
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Box 10.14: Ontologies
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Ontologies are controlled vocabularies to organize the knowledge of a
specific field, for example biological pathways, diseases or phenotypes (see
Box 10.12 for a list of biomedical ontologies). These vocabularies are usually
manually curated by an authoritative consortium of domain experts. An
important vocabulary is the gene ontology (GO). It consists of three separate
branches: (1) “cellular component” (4,195 terms), (2) “molecular function”
(11,120 terms), and (3) “biological process” (29,682 terms), each forming a
hierarchical, acyclic tree. The root term at the top is the most general,
increasingly specific terms are connected by either is a, part of or
regulates links that describe the particular relationship between the
respectively linked terms.

Ontologies are not only useful for systematic annotation and collection of
knowledge, but can also be used to assess the “semantic similarity” among
different terms according to their relative position in the tree [139]. A
common approach relates the specificity (tree depth) of a term to its
information content (IC). The similarity between two terms can then be
calculated from the IC of their most informative (i.e., highest IC) common
ancestor. Note that most biological entities, such as gene products, are
usually annotated with several terms and different strategies can be used to
aggregate the similarity among several terms, see [139] for a detailed
discussion.
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Seed gene ranking Candidate gene ranking

Final disease module

Figure 10.6: Illustration of the ranking procedure (top) and the final asthma disease module
(bottom) from [123]. Seed genes and candidate genes are first ranked separately according to
their enrichment with different biological datasets. The individual rankings are then
combined into a final score for each gene in the disease module, which can then be used to
prioritize pathways within the module.
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illustrates how the different data are combined into a final score for each gene in the
asthma disease module, which in turn can be used to prioritize pathways within the
module. The first step is to create a ranking of all genes for each individual data
source. Seed genes and candidate genes are often examined separately, which has
the advantage that they can be given different weights when they are combined later
on. Depending on the particular data type, the ranking can be based on fold-change
for differential expression data, GWAS p-value or functional similarity with known
processes (compare with Box 10.14), for example. The individual rankings can then be
combined into a single score, e.g., using the so-called Borda-count [140]: The score of
a gene is taken to correspond to its inverted rank and the scores of different rankings
are simply added. Finally, the integrated gene score can be used to prioritize pathways
within the module, thus complementing commonly used measures, such as coverage
of genes in the pathway. The integrated biological relevance of a pathway within the
module can be quantified by the average score of its genes. Additional potentially
interesting network-based analyses that can be performed with the disease module
include identifying overlaps with other diseases or with network modules known to
be modulated by drugs, for example using the distance measures above, or apply-
ing community detection to identify potential submodules, for example for patient
stratification.

10.5 Summary and Outlook

Network medicine is a highly dynamic and rapidly expanding field covering
virtually all areas of biomedical research. This brief introduction can therefore only
provide a necessarily incomplete and highly subjective selection. We hope that the
references we provide may serve as a starting point for further reading and also
recommend a recently published textbook focusing exclusively on this subject [141].

An important challenge in current biomedical research is to integrate the ever
growing amount of “omics” data (e.g., genomics, epigenomics, proteomics, meta-
bolomics, lipidomics). Network approaches are inherently holistic and integrative,
and particularly multilayer networks are very promising candidates for addressing
this challenge [79]. First analytical analyses of multilayer networks highlight the
importance of a detailed, context-aware mapping of different types of interactions
to fully understand the interplay between structure and dynamics of such complex
networks [142]. So far, most studies on biomolecular networks focus on structural
network properties and a thorough understanding of their dynamical properties
remains an important issue. The concept of dynamic controllability, for example,
is well established in network theory [143, 144] and could in principle be applied
to driving a cell from a disease state to a healthy state [143]. We expect that such
network approaches will be key to designing advanced therapeutics for complex
diseases that cannot be understood, nor treated, by a simple mono-causal molecular
mechanism. The ultimate goal of network medicine is of course to contribute not
only to basic research, but to the translation to benefit patients. Based on the pace
at which network medicine is progressing, we are confident that this exciting and
challenging goal will be reached rather sooner than later.
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10.6 Exercises
To familiarize yourself with some basic network-based approaches to human dis-
eases we will perform a rudimentary disease module analysis. The exemplary solution
we provide is based on the programming language python and utilizes heavily the
excellent networkx module, but of course other programming languages offer similar
functionalities.

10.1 Constructing the interactome

(a) Use one of the databases listed in Box 10.12 to construct an interactome
network. We sugget using HIPPIE, as it allows for both programmatic access
via an API or download of the entire dataset in an easy to parse text format.

(b) Construct different networks with different parameters, such as different
confidence scores or different experimental sources.

(c) Perform a basic characterization of the overall topology of each network,
e.g., overall coverage, degree distribution, number of isolated components,
distribution of shortest pathlengths, clustering coefficient, etc.

10.2 Constructing a seed cluster for a particular disease

(a) Use one of the databases listed in Box 10.12 to assemble a set of seed genes
for a specific disease.

(b) Place the seed genes on the interactome and determine the degree of local-
ization using different measures from Box. 10.10.

(c) Assess the statistical significance of the measured localization using different
randomization schemes, both for the network topology and the seed genes
(see Box. 10.11).

10.3 Constructing a disease module

(a) Implement two different network-based gene prioritization algorithms intro-
duced in Box 10.13.

(b) Rank all genes in the interactome using both methods and with varying
parameters of the respective algorithms.

(c) Evaluate how the results change when removing various fractions of the
seed genes.

10.4 Perform an enrichment analysis of the disease module

(a) Use the databases listed in Box 10.12 to assemble an independent set of
genes with potential relevance to the the disease, e.g., genes found to be
differentially expressed in a patient cohort.

(b) Test whether the ranked candidate genes are enriched for the genes of the
independent validation set.

(c) Perform a gene set enrichment analysis of the disease module using gene
ontology to identify prominent biological processes within the
module.

Note: Solutions are available to instructors at www.cambridge.org/bionetworks.



450 B U P H A M A L A I , C A L D E R A , MÜ L L E R , M E N C H E
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