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Integration of Molecular 
Interactome and Targeted 
Interaction Analysis to Identify a 
COPD Disease Network Module
Amitabh Sharma1,3,4,5, Maksim Kitsak4, Michael H. Cho   1,2,3, Asher Ameli1,10, Xiaobo Zhou1,3, 
Zhiqiang Jiang1, James D. Crapo6, Terri H. Beaty   7, Jörg Menche8, Per S. Bakke9, 
Marc Santolini   1,4,5 & Edwin K. Silverman1,2,3

The polygenic nature of complex diseases offers potential opportunities to utilize network-based 
approaches that leverage the comprehensive set of protein-protein interactions (the human 
interactome) to identify new genes of interest and relevant biological pathways. However, the 
incompleteness of the current human interactome prevents it from reaching its full potential to 
extract network-based knowledge from gene discovery efforts, such as genome-wide association 
studies, for complex diseases like chronic obstructive pulmonary disease (COPD). Here, we provide a 
framework that integrates the existing human interactome information with experimental protein-
protein interaction data for FAM13A, one of the most highly associated genetic loci to COPD, to find a 
more comprehensive disease network module. We identified an initial disease network neighborhood 
by applying a random-walk method. Next, we developed a network-based closeness approach (CAB) 
that revealed 9 out of 96 FAM13A interacting partners identified by affinity purification assays were 
significantly close to the initial network neighborhood. Moreover, compared to a similar method 
(local radiality), the CAB approach predicts low-degree genes as potential candidates. The candidates 
identified by the network-based closeness approach were combined with the initial network 
neighborhood to build a comprehensive disease network module (163 genes) that was enriched with 
genes differentially expressed between controls and COPD subjects in alveolar macrophages, lung 
tissue, sputum, blood, and bronchial brushing datasets. Overall, we demonstrate an approach to find 
disease-related network components using new laboratory data to overcome incompleteness of the 
current interactome.

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and recently 
it was estimated that COPD cases in developed countries would increase by more than 150% from 2010 to 
20301–4. Furthermore, similar to other complex diseases, it has been challenging to identify systematically the 
likely multiple genetic risk factors for COPD. Genome-wide association studies (GWAS) can identify specific 
genetic loci consistently associated with disease in an unbiased manner and have reported hundreds of associa-
tions between complex diseases and traits5–7. However, for the vast majority of such genome-wide “hits”, specific 
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causal mechanisms remain uncertain. There is increasing evidence supporting the hypothesis that the onset and 
progression of complex diseases like COPD arise from the interplay between a number of interconnected caus-
ative genes in a manner compounding the effects of any one variant8–10. Indeed, integrating GWAS data with 
molecular interaction networks and gene expression information facilitates a better understanding of disease 
pathogenetic mechanisms10–14. A variety of approaches have been developed to infer relationships between genes 
showing genome-wide significant evidence of association within the human interactome—the comprehensive set 
of molecular relationships between cellular proteins14–17. For example, we showed that a disease network module 
is enriched for disease susceptibility variants in asthma10. A GWAS of inflammatory bowel disease used DAPPLE, 
which is based on the observation that truly causal genes tend to link to each other in the human interactome, to 
prioritize potential disease candidates18. Since combinations of genetic alterations associated with a disease might 
affect a common component of the cellular system, module-centric approaches might be helpful in finding the 
disease-related components in the interactome13,19. Yet, the output of these approaches can be strongly influenced 
by (i) the incompleteness of the pre-specified interactome (false-negative results), and (ii) false-positive errors 
in the interactome. The impact of the incompleteness could result in failure to identify network relationships for 
genes implicated by GWAS. Thus, integrating the module-centric approach with targeted interaction analysis 
(e.g., pull-down assays) of GWAS genes might be helpful in discovering the functional relationships of these genes 
with a disease of interest. In this work we combine new experimental protein-protein interaction data with the 
existing human interactome to enhance our understanding of the genes involved in COPD. The objective relies on 
the “local impact hypothesis,” which assumes that if a few disease components are identified, other components 
are likely to be found in their vicinity of the human interactome10,12. Moreover, if a disease gene is not mapped in 
the interactome, it is possible that its neighbors detected by targeted interaction analysis might indicate its biolog-
ical function. Hence, we first identify the disease-related network neighborhood including known COPD disease 
genes (seed genes) in the interactome by applying a degree-adjusted random-walk algorithm20 (DADA), which is 
a guilt-by-association approach. Next, we test whether experimentally determined links (pull-down assay) for a 
single, consistently associated COPD gene (FAM13A) not mapped on the human interactome could enhance our 
knowledge about functional implications of FAM13A in COPD pathogenesis. The approach first aggregates the 
network neighborhood around the COPD ‘seed’ disease genes using DADA20. Further, to define a boundary of 
the disease network neighborhood, we use the sub-genome-wide significant association signals from the COPD 
GWAS (Fig. 1). This step helps to find enrichment of moderate p–value signals associated with those neighboring 
genes that are in the proximity of the seed genes. We hypothesized that combining experimental interaction data 
with the existing human interactome would develop a more comprehensive disease network module for COPD. 
To test this hypothesis, we derive a novel network-based closeness approach (CAB) to predict FAM13A partners 

Figure 1.  Overview of the approach to identify the COPD disease network module by using the edge-weighted 
interaction network. First, we applied the Degree-Aware Disease Gene Prioritization (DADA) algorithm and we 
prune the DADA results by integrating COPD GWAS data. (A) Workflow describing the method. (B) Among 
the 11 high confidence COPD seed genes, 10 were mapped on the human interactome, with 3 of them being 
directly connected.
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significantly close to the initial COPD localized neighborhood. Overall, our approach enhances our understand-
ing about the COPD disease network module and predicts new candidate genes and pathways influencing COPD 
pathogenesis.

Results
Building an initial COPD network neighborhood using the Degree-Aware Disease Gene 
Prioritization approach (DADA).  The disease module hypothesis postulates that disease susceptibility 
genes should form one or a few large connected components in a well-defined neighborhood of the human 
interactome10,12. Selection of the seed genes strongly influences the interpretation of such a module-centric 
approach, and therefore we restricted our analysis to only high-confidence COPD disease genes from GWAS and 
Mendelian syndromes (Fig. 1B). To avoid bias toward including highly connected genes in the network neighbor-
hood, we implemented the random walk-based DADA approach, which provides statistical adjustment models 
to remove the bias with respect to degree of the genes20. Since DADA provides ranking to all of the genes in the 
human interactome, we defined the boundary of the disease network neighborhood by integrating additional 
genetic signals from COPD GWAS (not reaching traditional p-value thresholds for genome-wide significance) 
(Supplementary Figure 1). We first generated a single genetic association p-value for each gene in the interactome 
using VEGAS with the default all snps test21, and then plotted p-values of the added DADA genes vs. the back-
ground p-value distribution (Fig. 2A). After the addition of 150 genes, the genetic association p-value of added 
genes reached a plateau (Fig. 2A) and the connected components among the 150 genes were defined as the ‘initial 
network neighborhood’. At this threshold, we found eight seed genes in the largest connected component (LCC) 
of size 129 genes, and the other two seed genes were part of two small components of sizes 17 and 4, respectively 
(Fig. 2C). Indeed, the LCC of 129 genes was found to be significant compared to the largest connected component 
that would emerge by chance if the 129 genes were placed randomly (10,000 times) in the human interactome 
(Z-score = 27, p = <0.00001, Fig. 2B). Overall, these three components constitute the COPD localized neighbor-
hood with 140 DADA genes plus 10 original high-confidence COPD seed genes. We compared our results with 
the Disease Module Detection (DIAMOnD) algorithm, which identifies the disease neighborhood around a set 
of known disease proteins based on the connectivity significance22. Interestingly, we found a significant overlap 
between DADA and DIAMoND output (Supplementary Figure 2), indicating that the results are consistent using 
a different network-based approach.

The 10 COPD seed genes that were part of the initial network neighborhood included: IREB2, SERPINA1, 
MMP12, HHIP, RIN3, ELN, FBLN5, CHRNA3, CHRNA5, and TGFB2 (Fig. 2C). Since one of the key genes identi-
fied by COPD GWAS, FAM13A, was not mapped in the human interactome, we tested whether specific interact-
ing partners of FAM13A could reveal new knowledge regarding this particular gene in COPD.

FAM13A pull down assay.  FAM13A contains a Rho GTPase-activating protein-binding domain; it inhibits 
signal transduction and responds to hypoxia. Recent work by our research group indicates that FAM13A is 
involved in WNT/beta catenin pathway signaling23. FAM13A was not mapped in the edge-weighted human inter-
actome (ConsensuspathDB) and moreover, no edges were reported in Rolland et al.24 high-quality human binary 
protein-protein interactions and BioGRID interaction data (2014)25. Thus, we performed a pull-down assay using 
affinity purification-mass spectrometry, which identified 96 interacting partners of FAM13A23. We measured the 
likelihood of having a protein with at least 96 interacting proteins in the interactome. Among 14,280 genes in the 
interactome, 581 genes had a degree of 96 or greater ≥ = .P k( ( 96) 0 04), suggesting that FAM13A is a relatively 
highly connected protein in the interactome (Supplementary Figure 3A). Further, we tested whether the FAM13A 
interacting partners are closer to each other within the interactome than a same-sized set of randomly selected 
proteins. Based on 10,000 simulations, we observed significant closeness (Zscore = −9.685) among FAM13A 
partners (Supplementary Figure 3B). This indicates that even if FAM13A partners are not directly interacting, 
they might be involved in a similar biological process because of their close proximity to each other. We found 
that none of the 96 FAM13A interacting partners were among the COPD localized neighborhood that we had 
created with DADA.

Topological distance between the COPD neighborhood proteins and FAM13A interacting pro-
teins in the interactome.  Given the substantial incompleteness of the current human interactome12, it is 
difficult to conclusively determine whether the COPD disease network neighborhood would directly connect 
to interacting partners of FAM13A, as a single missing link might have disconnected FAM13A from the COPD 
localized neighborhood. Hence, we computed a network-based closeness metric (CAB) that compares the weighted 
distance between FAM13A partners (A) and proteins in the COPD localized network neighborhood (B) to ran-
dom expectation in order to compute the Z-score (see methods and Fig. 3A). With a Z-score significance thresh-
old of −1.6 (p < 0.05), we found 9 genes significantly close to the COPD localized neighborhood in the human 
interactome and 87 genes that were not significant (Fig. 3B). The 9 genes with significant closeness to the COPD 
localized neighborhood were: GPC4 (Z = −4.04), ESF1 (Z = −3.46), OSBPL8 (Z = −2.97), KIAA1430 (−2.93), 
ZNF768 (Z = −2.68), AP3D1 (Z = −2.00), ANKRD17 (Z = −1.96), NIP7 (-Z = 1.79) and RBM34 (Z = −1.77).

Comparison with the Local Radiality (LR) method.  We compared the CAB results with the Local 
Radiality (LR) method that utilizes topological information (i.e., shortest path distance) to predict the proxim-
ity of dysregulated genes to corresponding drug targets26. In our case, we measured the closeness of FAM13A 
partners (96 genes) with the COPD disease neighborhood (150 genes) by applying the LR method. In CAB the 
confidence scores of the edges play an important role to either shorten or increase the distances. Thus, to carefully 
claim that a gene is close to the COPD network neighborhood, we not only ensured that the gene is topologically 
close to the neighborhood but also considered the strength of each interaction based on different sources of 
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evidence for the existence of such a path. As compared to top CAB genes, the nine highest score genes by LR were 
enriched in hubs. As a consequence, the average degrees <k> between these two methods were significantly 
different (P = 0.0004, Mann–Whitney U test) (Supplementary Figure 4). The hubness criterion helped us dis-
criminate between the results from these two approaches. This seems pragmatic, as the low degree genes might be 
more likely to be involved in a local biological process than those high degree genes representing global molecular 
pathways. Furthermore, it has been proposed that highly connected superhubs perform the most basic biological 
functions (evolutionarily early), with the more specialized functions (evolutionarily late) being performed by the 
peripheral genes. Thus, CAB helps to predict the FAM13A partners that might be involved in more specialized 
biological functions (low degree genes) related to COPD pathogenesis. Furthermore, it has also been observed 
that changes in gene expression predominantly occur in the genes (nodes) with low connectivity, but not in the 
superhubs27.

COPD disease module with all eleven COPD seed genes.  CAB considers all of the possible paths 
between CA  and CB  genes to calculate the statistical significance; hence, we applied a greedy strategy (Steiner) 
to find the optimal paths among all of the paths connecting the COPD network neighborhood and CAB genes28. 
We observed a single network module consisting of CAB genes and COPD network neighborhood genes with only 
four intermediate genes (ELAVL1, CSNK2A2, BARD1 and SIRT7). Of interest, including these linker genes 

Figure 2.  Initial COPD disease network neighborhood. (A) GWAS p-values of the added DADA genes vs. 
the background p-value distribution (150 gene cut-off). (B) Z-score significance of the largest connected 
component (LCC). (C) COPD localized network neighborhood of 140 DADA genes and 10 seed genes 
distributed in three components.
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provided connections to the network module for the two COPD seed genes, RIN3 and HHIP, that were not part 
of the original largest connected component of 129 genes. Our resulting expanded set of 163 connected genes, 
including all of the 11 seed genes (Supplementary Table 1), is referred to as the ‘COPD disease network module’ 
(Fig. 4A).

Validation of COPD disease network module in COPD specific gene-expression data.  We tested 
the relevance of the COPD disease network module by evaluating fold change of differentially expressed mod-
ule genes in COPD-specific gene expression data sets. We compared the fold change (absolute value of loga-
rithm of fold change) of differentially expressed module genes to all other differentially expressed genes with 
unadj.p < 0.05 in eight COPD-specific gene expression data sets (Table 2). We observed a significantly higher 
fold-change in the COPD disease network module compared to other differentially expressed genes in seven 
datasets (Fig. 4B). As shown in Table 2, even after removing the seed genes, the significance was retained in six 
datasets (Supplementary Figure 5). Further, by considering all of the genes tested for differential expression, we 
still find that COPD disease network module genes were significantly enriched in four COPD gene-expression 

Figure 3.  Network-based closeness of FAM13A partners to COPD disease network neighborhood. (A) 
Illustration of the network-based closeness measure ( C )AB  for FAM13A partners to COPD disease network 
neighborhood. We calculate the mean shortest distances between CA  and CB  and compare it with the random 
selection of same number of nodes. (B) The closeness significance of 96 FAM13A partners to COPD disease 
network neighborhood.

Figure 4.  COPD disease network module, including experimentally determined FAM13A interactors, and 
gene-expression changes in COPD-specific data. (A) COPD disease network module connecting 11 seed genes 
including FAM13A. (B) Fold change difference between module differentially expressed genes (p < 0.05) and 
non-module differentially expressed genes.
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datasets (sputum, lung tissue, peripheral blood and alveolar macrophages) (Supplementary Figure 6). These 
results suggest the ability of our network-based approach to identify new genes relevant to COPD. Additionally, 
to correct for connectivity as a potential selection bias in the comparison of module and non-module genes, we 
selected 10 random genes either from the disease network module or from all differentially expressed genes (fil-
tered at p < 0.05). For the latter, we made sure that all selected genes were connected using an iterative procedure: 
the first gene was selected at random, the second gene was selected in the neighborhood of the first gene, the third 
gene was selected in the neighborhood of the two first genes and so on. As compared to our previous observation 
in Supplementary Figure 5, we observed that the selection of a connected subset increases the significance of the 
differences in gene expression between the COPD disease module genes and randomly selected genes (*p < 0.05, 
**p < 0.01, ***p < 0.001, Supplementary Figure 7). This seems to be due to the fact that high fold change genes 

Gene.symbol logFC adj.P. Val P. Value

Shaykhiev2009-Alveolar macrophages Non-smoker vs COPD

IL32 −3.770 0.0014 1.35E-06

ADAM11 −1.441 0.0342 0.0004

CXCL5 −2.049 0.0359 0.0004

MMP7 1.952 0.0381 0.0005

AP3D1 0.451 0.0387 0.0005

MMP12 2.390 0.0423 0.0006

Tedrow2013-Lung Control vs COPD

MMP1 2.452 0.0069 3.13E-05

TGFB2 −0.768 0.0141 0.0001

WISP1 1.410 0.0158 0.0002

PRSS3 1.023 0.0165 0.0002

MMP9 1.238 0.0240 0.0004

TGFBR3 −0.629 0.0298 0.0006

CAT −0.466 0.0306 0.0007

SRPX2 0.728 0.0401 0.0011

MMP12 1.621 0.0433 0.0013

Singh2011-Eclipse sputum GOLD I vs GOLD IV

FAM115A −1.228 0.0023 2.78E-06

HHIP −0.645 0.0046 2.91E-05

CAT −0.535 0.0047 3.17E-05

SERPINE1 0.969 0.0088 0.0002

CAT −0.683 0.0100 0.0002

CHRNA3 −0.875 0.0109 0.0003

MMP1 1.320 0.0157 0.0006

CXCL1 0.494 0.0167 0.0007

TNFRSF14 0.492 0.0176 0.0008

F12 0.485 0.0184 0.0008

LTBP2 0.722 0.0205 0.0010

BPI 0.870 0.0229 0.0013

CTRC 0.625 0.0273 0.0019

FBN1 −1.399 0.0278 0.0019

COL14A1 −0.410 0.0288 0.0021

SERPINA1 0.592 0.0294 0.0021

FBXL5 0.400 0.0384 0.0035

PLAUR 0.283 0.0394 0.0037

PTCH1 −0.753 0.0394 0.0037

Steiling2013-bronchial brushing Current smokers NO-COPD-
Current smokers with COPD

CDON −0.264 0.0296 0.0005

LYPD3 0.218 0.0370 0.0009

GSDMB 0.322 0.0431 0.0012

CHRNA7 0.185 0.0438 0.0013

CTGF 0.237 0.0477 0.0016

TNFAIP1 0.126 0.0495 0.0018

Table 1.  Differentially expressed COPD disease network module genes in four datasets with adjusted 
p-values < 0.05.
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selected at random when looking at all differentially expressed genes tend to not be connected to other differen-
tially expressed genes. Overall, these results indicate that the differentially expressed genes were heavily localized 
in the gene set added by our approach, and not influenced by the p-value criteria, thus supporting our method’s 
ability to identify candidate genes relevant to COPD.

Potential candidate genes for COPD.  With an adjusted p-value < 0.05 (limma), we found 36 COPD dis-
ease module genes differentially expressed in different COPD-related datasets. For example, AP3D1 (adj.p-0.038) 
and IL32 (adj.p-0.001) were up-regulated and MMP12 (adj.p = 0.042) was down-regulated in non-smoking con-
trols vs. COPD subjects in alveolar macrophages29 (Alveolar macrophage I). In lung tissue, we found TGFB2 
(adj.p = 0.014) and CAT (adj.p = 0.03) were down-regulated in control vs. COPD subjects30 (Lung I). Twenty 
COPD disease module genes were differentially expressed in GOLD stage II vs. GOLD stage IV subjects in 
ECLIPSE induced sputum data31. CTGF (adj.p = 0.047), GSDMB (adj.p = 0.044) and CHRNA7 (adj.p = 0.043) 
were up-regulated between current smokers with no COPD vs. current smokers with COPD in bronchial brush-
ing samples32 (Table 1). These results support the ability of our approach to localize candidate genes of potential 
relevance in COPD-related tissue types. Moreover, all of the 9 CAB genes were differentially expressed in at least 
one of the gene expression datasets (Z = 2.2, p = 0.016) (Supplementary Figure 8).

Biological pathway enrichment in the COPD disease module.  Among the biological pathways most 
significantly enriched in the COPD disease network module were inflammatory response, collagen catabolic 
process, regulation of TGFB-receptor signaling pathway, and extracellular matrix organization pathway (Table 3). 
Alterations of extracellular matrix components (ECM), including elastin, are known in patients with COPD, and 
they contribute to airflow obstruction33. In the COPD network module, 34 genes representing the ECM pathway 
were connected to each other (Fig. 5A). Moreover, we found support from the medical literature for 23 module 
genes from the total of 41 genes representing the ECM pathway in COPD pathogenesis (Supplementary Table 2). 
CAB genes were part of: Glycosaminoglycan/aminoglycan catabolic process (GPC4), negative regulation of muscle 
cell differentiation (ANKRD17), negative regulation of cell migration (OSBPL8), regulation of alpha-beta T cell 
activation (AP3D1) and response to decrease in oxygen levels (AP3D1). Gene expression analyses in cell lines 
from several tissues have demonstrated an increase in FAM13A levels in response to decrease in oxygen levels34. It 
has been suggested that lower oxygen tension might modulate FAM13A activity35, however, the exact mechanism 
has not been explained. In the COPD disease network module, AP3D1 (CAB gene) interacts with FAM13A and is 
an immediate neighbor of the CTGF gene, which is part of the hypoxia pathway (decrease in oxygen levels). Thus, 
the connection of FAM13A to CTGF reveals a potential mechanism by which FAM13A could contribute to the 
hypoxia response (Fig. 5B).

We observed a small overlap (37 genes, 23%; vs 14% background, p-value = 0.0013) of the COPD disease 
network module with the Inflammasome (see methods)36 (Supplementary Table 1). This suggests that the COPD 
disease network module was enriched for inflammation-related genes, which is consistent with the known role 
of inflammation in COPD37. Overall, the COPD disease network module not only contains the inflammation 
component, but also other functional components like extracellular matrix organization, hypoxia response, and 
WNT/beta catenin signaling pathways23.

Discussion
The purpose of this work was to determine whether a network-based approach could enhance our understand-
ing of the genes involved in the pathogenesis of a complex disease (COPD) by combining new experimental 
protein-protein interaction data with the existing human interactome. Identifying causal genes for complex dis-
eases like COPD, which are likely influenced by many genetic factors of modest effect size, is a major bottleneck in 
understanding the biological mechanisms leading to these diseases. A complete and accurate map of the human 
interactome could have tremendous impact on our ability to understand the molecular underpinnings of human 
disease. Yet, such a map is far from completion, which makes it currently impossible to evaluate precisely how 
far a given disease network module is from completion. Here, we showed that despite its incompleteness, a sys-
tematic network-based approach could help us to understand the connectivity of disease genes in COPD. Our 
initial analysis provided a set of 140 potential candidate genes that were part of three connected components in 

Reference GEO ID Tissue
P-value with 
Seed genes

P-value without 
seed genes

Shaykhiev29 GSE13896 Alveolar Macrophages I 0.002 0.004

Poliska66 GSE16972 Alveolar Macrophages II 0.037 0.111

Singh31 GSE22148 Sputum 0.018 0.037

Steiling32 GSE37147 Bronchial brushings 0.011 0.011

Bahr64 GSE42057 Peripheral blood 
mononuclear cell 0.030 0.030

Tedrow 2013 GSE47460 Lung homogenate (Lung I) 0.00026 0.001

Singh63 GSE54837 Blood 0.009 0.009

Bhattacharya65 GSE8581 Lung tissue (Lung II) 0.163 0.061

Table 2.  Enrichment of COPD disease module genes in different tissue gene expression data sets with and 
without seed genes.
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Biological Process Adjusted P-value Genes

Extracellular matrix organization 0
FBN2;PRSS1;COL14A1;ELN;SERPINE1;IHH;DPT;FBLN1;LTBP3;FBLN2;NID2;LTBP1;LOXL1; 
FBLN5;ADAMTS4;LGALS3;EFEMP2;CTSG;PRSS2;ELANE;TGFB2;TGFB1;MMP7;LUM;TGFB3; 
MMP1;CTRB1;SPINK5;BGN;MMP9;DCN;MFAP5;MMP12;MMP11;BMP2;LOX;MFAP2;COL8A1; 
FMOD;ENG;FBN1

Collagen catabolic process 5.46E-07 MMP12;MMP11;MMP7;COL14A1;MMP26;MMP1;COL8A1;PRTN3;MMP9;PRSS2;ELANE

Behavioral response to nicotine 9.33646E-07 CHRNB2;CHRNA3;CHRNB4;CHRNA5;CHRNA4;CHRNA7

Multicellular organismal macromolecule metabolic process 1.58E-06 MMP12;MMP11;MMP7;COL14A1;MMP26;MMP1;COL8A1;PRTN3;MMP9;PRSS2;ELANE

Negative regulation of transforming growth factor beta 
receptor signaling pathway 2.60E-06 TGFBR3;FBN2;TGFB1;TGFB3;ADAMTSL2;LTBP1;ASPN;VASN;ENG;FBN1

Cellular component disassembly 6.63E-06 FBN2;PRSS1;MMP7;COL14A1;MMP1;ELN;CTRB1;MMP9;DCN;ADAMTS4;MMP12;MMP11; 
COL8A1;CTSG;PRSS2;ELANE;ENG;FBN1

Response to decreased oxygen levels 1.04E-05 CHRNB2;TGFB2;TGFB1;CHRNA4;TGFB3;CHRNA7;IREB2;SOD3;VASN;CTGF;TGFBR3;BMP2; 
STC2;CAT;ENG

Synaptic transmission, cholinergic 1.19E-05 CHRNB2;CHRNA3;CHRNB4;CHRNB3;CHRNA4;CHRNA7

Response to oxygen levels 1.82E-05 CHRNB2;TGFB2;TGFB1;CHRNA4;TGFB3;CHRNA7;IREB2;SOD3;VASN;CTGF;TGFBR3;BMP2; 
STC2;CAT;ENG

Regulation of transforming growth factor beta receptor 
signaling pathway 2.84E-05 TGFBR3;FBN2;TGFB1;TGFB3;ADAMTSL2;LTBP1;ASPN;VASN;ENG;FBN1

Negative regulation of transmembrane receptor protein 
serine/threonine kinase signaling pathway 3.54E-05 TGFBR3;FBN2;TGFB1;TGFB3;ADAMTSL2;LTBP1;ASPN;VASN;ENG;FBN1

Response to hypoxia 3.78E-05 CHRNB2;TGFB2;TGFB1;CHRNA4;TGFB3;CHRNA7;IREB2;SOD3;VASN;TGFBR3;BMP2;STC2; 
CAT;ENG

Regulation of stem cell differentiation 8.16E-05 TGFBR3;BMP2;TGFB2;TGFB1;SMO;TGFB3;LTBP3;ELAVL1;VASN

Regulation of transmembrane receptor protein serine/
threonine kinase signaling pathway 8.56E-05 TGFBR3;FBN2;BMP2;SHH;TGFB1;TGFB3;ADAMTSL2;LTBP1;ASPN;VASN;ENG;FBN1

Inflammatory response 0.00025 CXCL6;SERPINA3;CCL13;ORM1;TGFB1;SERPINA1;F12;CXCL1;CELA1;LYZ;BMP2;CCL8;CCL7; 
CCR3;ELANE;CCR2

Regulation of cellular response to growth factor stimulus 0.0003 TGFBR3;FBN2;TGFB1;TGFB3;HHIP;ADAMTSL2;LTBP1;ASPN;VASN;ENG;FBN1

Defense response to bacterium 0.00034 ADAMTS4;CXCL6;MMP7;CD160;SERPINE1;DEFA5;BPI;TNFRSF14;PPBP;LYZ;ELANE

Regulation of epithelial cell proliferation 0.00035 TGFB2;TGFB1;PTCH1;IHH;TGFBR3;MMP12;BMP2;SHH;SMO;APOH;GAS1;CCR3;ENG

Response to nicotine 0.00039 CHRNB2;CHRNA3;CHRNB4;CHRNA5;CHRNA4;CHRNA7

Regulation of smoothened signaling pathway 0.0005 SHH;SMO;HHIP;PTCH1;PTCH2;IHH;GAS1

Positive regulation of collagen biosynthetic process 0.0005 TGFB1;TGFB3;IHH;CTGF;ENG

Collagen fibril organization 0.0005 MMP11;TGFB2;LOX;LUM;COL14A1;DPT

Positive regulation of collagen metabolic process 0.0006 TGFB1;TGFB3;IHH;CTGF;ENG

Somite development 0.0006 SHH;SMO;PTCH1;IHH

Table 3.  Biological pathways significantly enriched in the COPD disease network module.

Figure 5.  (A) Extracellular matrix organization pathway genes in COPD disease network module. (B) 
Connection of COPD disease network module genes in the hypoxia pathway: CAB  helps to connect FAM13A 
to the hypoxia pathway through CTGF gene.
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a disease network neighborhood. Interestingly, the largest connected component of this set of genes included 8 
of the seed genes, which showed substantial network coherence and localization. Some of these 140 candidate 
genes have been previously implicated in COPD. For example, OLFM2 was among the genes within the COPD 
protein-protein interaction network built with a greedy search algorithm38. SOD3 is known to attenuate emphy-
sema and reduces oxidative fragmentation of ECM in mouse lung39. In addition, TGFB1 and its pathway members 
have been frequently implicated in COPD pathogenesis40. The novel CAB measure assisted in constructing a more 
comprehensive COPD disease network module including FAM13A and its relevant partners, eventually connect-
ing all of the 11 COPD seed genes into a single connected component comprising 163 genes/proteins (Fig. 4A). 
Overall, the COPD module genes showed significant differences in gene expression levels from lung tissue, alveo-
lar macrophage, blood, and sputum samples. For example, Tumor necrosis factor alpha (TNFα)-induced protein 
1 (TNFAIP1) was upregulated in smokers with COPD and directly interacts with RIN3, a COPD GWAS gene41. 
TNFAIP1 has been reported to be crucial for the induction of apoptosis42, indicating a potential role of RIN3 in 
apoptosis. Furthermore, AP3D1 was upregulated in COPD subjects29 (Alveolar macrophage I) and directly inter-
acts with FAM13A in our pull-down assay. The new alliance of FAM13A to the COPD disease network module 
via AP3D1 connects it to the hypoxia pathway (Fig. 5B), which reveals the potential molecular mechanism by 
which FAM13A influences hypoxia in epithelial and endothelial cells. Although other lung (e.g., idiopathic pul-
monary fibrosis) and heart (e.g., congestive heart failure) diseases can cause hypoxia, hypoxia is a common and 
important complication of advanced COPD. Thus, we found it interesting that pathway analysis of the COPD 
network module identified the hypoxia pathway. This evidence suggests the potential of the CAB measure to reveal 
new disease biology that might have been missed due to the incomplete human interactome.

Our approach adds a new dimension to the current causal gene identification approaches in complex diseases 
using the human interactome. Moreover, we were able to localize the network neighborhood of COPD and try 
to address (at least in part) the shortcomings of interactome incompleteness by providing new experimentally 
derived interactions for FAM13A, a key COPD gene not present in the current human interactome. We were able 
to connect FAM13A individual interactions to a localized network neighborhood by developing a new metric of 
network closeness, CAB. With the current thrust to understand GWAS genes with the help of incomplete protein 
interaction networks, our approach provides an alternative to connect targeted interaction and interactome data 
to identify a disease network module.

We focused on only a small set of seed genes for COPD, and that could be one of the limitations of the work. 
Moreover, since the disease-related gene within each COPD GWAS locus has not been definitively proven, we 
selected those genes that had the most compelling evidence for a role in COPD pathogenesis. For example, 
murine models of emphysema have demonstrated a smoking-related phenotypic effect for genes in four of the 
COPD GWAS loci that we included: 1) HHIP43; 2) FAM13A44; 3) IREB245; and 4) MMP1246. In addition, several 
other COPD GWAS loci have strong candidate genes, such as the nicotinic acetylcholine receptor genes that have 
been related to nicotine addiction (CHRNA3 and CHRNA5) and TGFB2 (part of the TGFBeta pathway). Thus, 
we contend that most of our selected seed genes are likely related to COPD pathogenesis. We also acknowledge 
that protein-protein interactions observed during in vitro experiments like yeast two-hybrid or affinity purifica-
tion assays may not actually occur due to the absence of cellular co-localization or gene expression in the tissue 
of interest. COPD is a heterogeneous disease, and it is possible that different subtypes of COPD patients could 
have different disease network modules. Since linker genes connected the three COPD disease components in 
the COPD network neighborhood into a single disease network module, it could be possible that these are really 
three different COPD network modules. Thus, future research to identify network modules related to specific 
COPD subtypes is warranted.

Overall, the disease network module approach that we applied is generic and can be applied to other diseases; 
this type of approach may be of broad use in disease gene identification in complex diseases in the coming era of 
network medicine.

Materials and Methods
Selection of high confidence COPD-associated genes.  Starting with previous GWAS for COPD sus-
ceptibility, and with specific genes implicated by eQTL or functional studies within GWAS regions, we identified a 
set of well-established genes associated with COPD: HHIP, CHRNA3/CHRNA5/IREB2, and FAM13A. We added 
recently described genome-wide significant associations to moderate-to-severe COPD or severe COPD, includ-
ing RIN3, MMP12, and TGFB241,47–51. We also considered genes causing Mendelian syndromes which include 
emphysema as part of their syndrome constellation: alpha-1 antitrypsin deficiency (SERPINA1) and cutis laxa 
(ELN and FBLN5)52,53. These 11 genes, in toto, were subsequently used as seed genes for network analyses. We 
included several genes from the chromosome 15q25 locus, since previous work from our group has suggested 
that there are likely at least two COPD genetic determinants in this region—both related to nicotine addiction 
(nicotinic acetylcholine receptor genes CHRNA3 and CHRNA5) and unrelated to nicotine addiction (IREB2)54. 
Of note, HHIP, FAM13A, and IREB2 are also supported by animal models of emphysema. In addition to these five 
COPD GWAS genes, we added MMP12, which was associated with COPD before it was discovered by GWAS50 
and which is also supported by an animal model of emphysema, as well as TGFB2 and RIN3. TGFB2 and RIN3 
(as well as HHIP, FAM13A, and the chromosome 15q25 region) were also strongly supported by the recent 
International COPD Genetics Consortium GWAS7.

Human protein interaction network: Interactome.  We compiled the physical protein-protein inter-
actions from the ConsensusPathDB database55. Physical protein interactions were assigned a confidence score 
between 0 and 1 using the interaction confidence-scoring tool (IntScore)56. We relied only on physical interaction 
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data in ConsensusPathDB, obtaining M = 150,168 links between N = 14,280 genes encoding these proteins with 
mean degree <k> of 21.03 and average clustering coefficient <C> of 0.141.

Localization of COPD network neighborhood in the human interactome.  The concept that pro-
teins located close to one another in the human interactome may cause similar diseases is becoming an increas-
ingly important factor in the search for complex disease genes. Different approaches tackle this problem of 
predicting complex disease susceptibility genes using different kinds of integrative data, but all of them involve 
superimposing a set of candidate genes alongside a set of known disease genes in some physical or functional net-
work13,17,57,58. However, many existing methods are likely to favor highly connected genes, making prioritization 
sensitive to the skewed degree distribution of protein-protein interaction (PPI) networks, as well as ascertain-
ment bias in available interaction and disease association data. To enhance our understanding regarding the local 
neighborhood of seed genes in the network, we applied the degree aware algorithm (DADA)20 to compute the 
proximity of the selected COPD seed genes to their neighbors by exploiting the global structure of the network. 
Several studies17,59 have shown global approaches like random walk outperform other local approaches like short-
est path distances, and therefore we focused on the global method. The final ranking for 14,280 genes encoding 
proteins included in the network was achieved by merging the random walk restarts output and statistical adjust-
ment models. We used the results from a COPD GWAS of 6,633 cases and 5,704 controls from 4 cohorts to define 
a boundary for the most promising DADA-ranked genes41. We assigned significant SNPs to genes using 50 kb 
boundaries, and generated gene-based p-values using VEGAS21.

FAM13A pull-down assay.  The FAM13A gene resides at a locus associated with COPD and with lung func-
tion in the general population by GWAS41,51,60,61. FAM13A contains a Rho GTPase-activating protein-binding 
domain, inhibits signal transduction, and responds to hypoxia; however, its primary function in the lung remains 
to be determined. The pull-down assay using affinity purification-mass spectrometry was performed previously23 
and resulted in 96 interacting proteins, establishing 96 edges for FAM13A in the interactome.

Proximity of the targeted interactions to the COPD neighborhood - Cab.  To quantify the 
network-based separation between the identified FAM13A interactions and the COPD disease network neigh-
borhood, we introduce the Cab minimum weighted distance, which we define as follows:

For any two nodes l and m we define the Cab distance as:

∑= ∈{ }d ln p wmin ( / ) , (1)lm u v path l m uv, ( , )

where ∈w [0, 1]uv  is the edge confidence score and ∈ ∞p (1, ) is the parameter of the model. Note that distance 
dlm depends both on the total number of network-based edges one needs to traverse from node l to node m and 
also the confidence scores of these weights, while parameter p tunes the relative contribution of these two 
factors.

In particular, in the p = 1 case, dlm depends only on confidence scores of edges connecting two nodes:

∏= − ∈{ }( )d ln wmin (2)lm u v path l m uv, ( , )

If confidence scores wuv are regarded as independent probabilities for the edges to be present in the network, 
then the product in Eq. (2) is simply the probability that given path from l to m exists. The larger this probability, 
the smaller distance dlm is.

On the other hand, if p is large, then dlm is independent of confidence scores:

≈d Lln p( ) (3)lm

where L is the smallest number of edges that need to be traversed from l to m.
We then use dlmto define distance from l to a set of nodes M as the sum of distances from l to all nodes in M:

∑
∈

d l d( )
(4)

M
k M

lk

We evaluated distances from nodes to the neighborhood for a set of parameters =p e e e e{ , , , }
0 1 2 10 . In the follow-

ing, the values of the parameter are indexed with power of the exponent (0, 1, 2, 10). To quantify the significance 
of the observed distribution of distances P d( )lm  from target proteins to the COPD localized neighborhood we 
used the Mann–Whitney U test with significance cutoff of P < 0.05. Specifically, we calculated the distribution of 
distances between targeted proteins to the module P d( )lm  and a random distribution of distance from target pro-
teins to all proteins in the network P d( )lm . To measure how much the two distributions are different, we calculate 
the Z-score:

σ
− =

−Z score TMc TRc
TRc

( )
( ) (5)

rand

rand

where TRcrand and σ TRc( )rand  denote the mean value and standard deviation of the random expectation 
p TRc( )rand . Assuming normality of p TRc( )rand , we can analytically calculate a corresponding p-value for each 
z-score, yielding a threshold of z-score ≤ −1.6 for the distance to be smaller than expected by chance with signif-
icant p-value ≤ 0.05.
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Local Radiality (LR) method for target prediction.  The LR method quantifies the proximity of a node 
from a set of genes of interest.

The LR score of node n in the network G is calculated as follows26:

=
∑ ∈LR(n)

sp(n, g, G)

M
g M

where sp calculates the length of shortest path between nodes n and g, and M  is the size of the community of 
interest (150 genes).

In other words, LR calculates the average shortest paths from node n to the module M.

COPD network module overlap with inflammasome genes.  Since clinical COPD is influenced by 
inflammation62, we looked for the potential overlap between the COPD disease network module and recognized 
genes relevant to inflammatory response or the ‘inflammasome’ genes. These inflammasome signature genes were 
compiled from 11 disease models (asthma, COPD, fibrosis, atherosclerosis, diabetes (adipose), diabetes (islet), 
obesity, stroke, neuropathic pain, inflammation pain and sarcopenia)36. We used the total of 2,483 inflammatory 
signature genes previously reported from mouse models and converted them to their human orthologs, obtain-
ing 2,331 genes in our analysis. Mouse to human orthologs were extracted from the Mouse Genome Informatics 
(MGI) database (http://www.informatics.jax.org).

Validation of COPD disease module in COPD- specific gene-expression data.  Our disease net-
work module approach selects genes based on their topological closeness to the COPD seed genes. To evalu-
ate COPD-specific relevance of genes localized around the seed genes, we extracted significantly differentially 
expressed genes (p-value < 0.05) from eight publicly available COPD-specific gene-expression datasets and 
assessed for each case the fold change difference between genes present in the COPD disease module compared to 
non-module differentially expressed genes. We used the limma R package (ver 3.10.1) for differential expression 
analysis. The 8 datasets are as follows:

	 1.	 Singh 2014: Peripheral blood gene expression samples from 171 subjects from the Evaluation of COPD 
Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study (GSE54837). Differential 
expression analysis was performed between control (n = 6) (healthy nonsmokers) vs. severe COPD 
(n = 13)63.

	 2.	 Singh 2011: Induced sputum gene expression from 148 COPD subjects in the ECLIPSE study, with 69 
Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 2, and 71 GOLD stage 3 & 4 subjects 
(GSE22148). Gene expression differences between GOLD 2 and GOLD 3&4 were analyzed31.

	 3.	 Shaykhiev 2009: Transcriptional profiling of alveolar macrophages obtained by bronchoalveolar lavage of 
24 healthy nonsmokers and 12 COPD smokers (GSE13896)29.

	 4.	 Bahr 2013: Expression data from peripheral blood mononuclear cells (PBMC) generated from 136 subjects 
from the COPDGene study (GSE42057), which consisted of 42 ex-smoking control subjects and 94 sub-
jects with varying severity of COPD64.

	 5.	 Tedrow 2013: Microarray data from whole lung homogenates of subjects undergoing thoracic surgery from 
the Lung Tissue Research Consortium (LTRC). These subjects were diagnosed as being controls or having 
COPD as determined by clinical history, chest CT scan, and surgical pathology. We considered 220 COPD 
subjects and 108 controls with no chronic lung disease by CT or pathology. These subjects went for surgery 
typically to investigate a pulmonary nodule and normal lung tissue was obtained for differential expression 
analysis (GSE47460)30.

	 6.	 Bhattacharya 2009: Gene expression patterns in lung tissue samples derived from 56 subjects (GSE8581). 
Cases (n = 15) were defined as subjects with FEV1 < 70% predicted and FEV1/FVC < 0.7 and Controls 
(n = 18) as subjects with FEV1 > 80% predicted and FEV1/FVC > 0.765.

	 7.	 Poliska 2011: Gene expression data from alveolar macrophage samples from 26 COPD and 20 healthy 
control subjects (GSE16972)66.

	 8.	 Steiling 2013: Bronchial brushings obtained from current and former smokers with and without COPD 
(GSE37147). Data from 238 subjects was used in the analysis to determine the association of gene expres-
sion with COPD-related phenotypes32.
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