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The VRNetzer platform enables interactive network
analysis in Virtual Reality
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Networks provide a powerful representation of interacting components within complex

systems, making them ideal for visually and analytically exploring big data. However, the size

and complexity of many networks render static visualizations on typically-sized paper or

screens impractical, resulting in proverbial ‘hairballs’. Here, we introduce a Virtual Reality

(VR) platform that overcomes these limitations by facilitating the thorough visual, and

interactive, exploration of large networks. Our platform allows maximal customization and

extendibility, through the import of custom code for data analysis, integration of external

databases, and design of arbitrary user interface elements, among other features. As a proof

of concept, we show how our platform can be used to interactively explore genome-scale

molecular networks to identify genes associated with rare diseases and understand how they

might contribute to disease development. Our platform represents a general purpose, VR-

based data exploration platform for large and diverse data types by providing an interface

that facilitates the interaction between human intuition and state-of-the-art analysis

methods.
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Network theory provides an arsenal of powerful tools and
concepts for analyzing diverse data. In biology and
medicine, it has found numerous applications for disen-

tangling the enormous complexity within and across different
levels of biological organization1–4. Networks have a distinct
advantage compared to other computational methodologies for
integrating and interpreting biological data: Their visual repre-
sentation allows for a uniquely intuitive interpretation, enabling
us to quickly identify potential local and global patterns in
complex data that can then be further assessed by advanced
computational and statistical means (Fig. 1a): In molecular
interaction networks, for example, highly connected hubs gen-
erally correspond to genes that play important roles in healthy
and disease states, such as pleiotropic genes5 or cancer driver
genes6. Dense local agglomerations of nodes often correspond to
specific biological functions7,8, and also disease-associated pro-
cesses are characterized by distinct connection patterns1,9.
Interactive visualizations of such interaction patterns are thus a
core component of major web resources and databases for

exploring functional annotations of individual genes or small
gene sets10–14. Also static visualizations of large-scale biological
networks may yield important insights into the overall archi-
tecture of the represented system, leveraged for example in large-
scale mapping efforts of biological interactions5,7,8,15,16.

Numerous dedicated softwares are available for small inter-
active, or large static network visualization17–23. These softwares
may also include a wide range of additional features, such as the
possibility to implement custom analysis methods or additional
data sources (see “Methods”). However, the full potential of
networks is still constrained by several fundamental challenges:
Large networks exhibit functionally relevant structures at various
scales, ranging from small node clusters (representing, e.g., pro-
tein complexes) to mesoscale structures (e.g., disease associated
neighborhoods) and global patterns (e.g., node centralities). The
inherent multi-scale nature of biological processes can only be
fully appreciated when the entire range from local to global
network structures can be inspected continuously and inter-
actively. Until now, this is only possible for very limited network

Fig. 1 A Virtual Reality (VR) network exploration platform. a Three examples of visual network patterns with direct biological interpretations. Left: highly
connected hub, indicating essential and often pleiotropic gene functions. The depicted NFKB1 gene is a subunit of an essential transcription factor involved
in a wide variety of biological processes. Middle: small, densely interconnected clusters often represent a particular biological function. The highlighted
cluster corresponds to the NADH-dehydrogenase, the first complex of the electron transport chain. Right: genes associated with the same disease are
often characterized by larger, yet significantly connected modules, as shown for genes associated with inflammatory bowel disease. b Green-screen
composition of a user wearing a VR headset and the respective VR scene she is currently exploring. c The VRNetzer platform consists of five modules that
can be customized independently. The frontend consists of the VR interface and an additional web browser-based interface to facilitate seamless exchange
between VR sessions and standard working environments. The user interface module connects the VR module to the backend, which consists of two
separate modules for data storage and data analytics. The individual modules are implemented in programming languages that are widely used for the
respective tasks.
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sizes of up to a few hundred nodes. On a conventional computer
screen, networks beyond this size typically lead to unintelligible
hairball visualizations that obscure existing structure and offer
little insights. This requires the selection of a smaller subnetwork,
yet in many applications, it is not clear how to select the most
meaningful one. For example, the network neighborhood around
a particular gene that describes the pathobiological mechanisms
of a disease in which it is involved is generally different from the
neighborhood of its normal, homeostatic function9. The small-
world property of biological networks implies that large parts of
the entire network can be reached within a few steps only, making
selections of small subnetworks a difficult process that may dis-
card an important intrinsic property of the architecture of bio-
logical systems.

Here we describe an approach to address these challenges by
using immersive Virtual Reality technology (Fig. 1b). The
immersive nature of VR provides a sense of depth that cannot be
achieved by other means, such as 2D or non-immersive 3D
representations. This allows for quickly and accurately resolving
connections that would otherwise be ambiguous due to partially
occluded nodes and/or links. As a result, network size orders of
magnitude larger can be meaningfully visualized, thus enabling
the smooth and continuous inspection of both local and global
network structure. We present network layouts specifically tai-
lored to leverage this immersive environment and allow for
interactive exploration of different functional and structural
network characteristics. As a proof of concept, we show how this
exploration can be leveraged to investigate gene variants in the
context of a molecular interaction network for identifying var-
iants responsible for severe genetic diseases.

Results
Design overview of the VRNetzer platform. Our VRNetzer
platform is designed in a modular fashion, allowing the user to
customize and extend the components for data visualization, data
analysis, and data input separately. The platform consists of five
key modules illustrated in Fig. 1c: (1) All data are stored and
organized in a single data module implemented as a standard
MySQL database. We included a molecular network curated from
the literature, as well as widely used gene annotation data ranging
from molecular functions to disease associations. (2) The analy-
tics module is used to access the data, perform user-defined
analyses via a Python interface and communicate the results to
the interactive data exploration frontends. (3) The core of our
VRNetzer platform is the VR module, providing an immersive 3D
frontend for visualizing and exploring large networks. It is
implemented in the industry-standard Unreal game engine24,
providing highly performant graphics rendering on non-
specialized and relatively inexpensive computer hardware, as
well as maximal compatibility with a broad range of VR hard-
ware. The VR module is connected to the data analytics engine
via a (4) user interface (UI) module that serves as a commu-
nication layer and offers the functionality of implementing arbi-
trary UI elements using standard web design libraries. We also
provide a (5) web module as a browser-based frontend designed
for tasks that can be performed more conveniently on a con-
ventional computer screen, such as data preprocessing or further
inspection of the results of a VR exploration session. The web
module thus facilitates the integration of VR exploration into
established workflows and can also be used as a standalone
application when no VR hardware is available.

Immersive network exploration. Conventional representations
on a computer screen limit the size of networks that can be
explored in an interactive fashion to a few hundred nodes and

links. Our immersive VR platform, in contrast, allows for seam-
less navigation within genome-scale molecular networks, such as
the human interactome consisting of around 16,000 proteins as
nodes and around 300,000 physical interactions as links (Fig. 2a).
The most basic navigation modes are the free movement within
the surrounding network, rotation, and translation of the network
with full six degrees of freedom, and arbitrary scaling of the
network size. The scaling allows for a seamless transition between
global network views and close-up inspection of local node
clusters or individual nodes.

Our platform provides functionality to annotate and analyze
the network for each level of organization: Individual nodes can
be inspected via a panel displaying any information contained in
the underlying database and by highlighting all directly connected
neighbors (Fig. 2b, top). Node clusters can be annotated with
attributes from the database, such as enriched gene ontology
(GO) terms or disease associations (Fig. 2b, middle). To realize
the full potential of our platform for global visualizations of large
networks, we developed a series of network layouts that are
specifically designed for immersive exploration. These layouts
allow us to assign explicit meaning to absolute and relative node
positions in 3D space, both on the level of node annotations and
the level of structural network characteristics: In functional
landscape layouts, the nodes are clustered together based on a
combination of network proximity and annotation similarity,
representing, for example, network neighborhoods associated
with a particular disease (Fig. 2b, bottom). Compared to
conventional network layouts, such as those generated by force-
based algorithms, in which the positioning of nodes is often only
indirectly linked to structural or functional network character-
istics, our layouts offer an explicit and thus easily interpretable
spatial organization. By observing the dynamic transition between
different explicit layouts, i.e., by gradually moving all nodes from
their position in one particular layout to new positions in
another, we can investigate nodes and their properties in different
contexts (Fig. 2c). For example, we can follow a selected group of
nodes from a layout emphasizing their biological function (Fig. 2c,
top) to a layout showing their involvement in different diseases,
while simultaneously inspecting their structural network proper-
ties, such as their degree (Fig. 2c, bottom).

Taken together, these immersive exploration features allow
users to quickly locate individual nodes and node clusters,
identify their immediate and broader neighborhoods in different
functional contexts, while seamlessly moving between network
scales, from individual nodes to the whole network.

User interaction design. Our goal was to create a UI that is as
self-explanatory as possible by utilizing familiar concepts from 2D
interfaces, while also making use of the unique, yet unfamiliar
capabilities of VR. We use standard HTC Vive controllers as
interface devices, providing six degrees of freedom regarding their
absolute position and rotation in space, together with several
clickable buttons. The controllers allow for manipulating 3D
objects through natural gestures, for example moving and rotat-
ing the network or selecting individual nodes (Fig. 3a). For more
programmatic tasks, such as selecting from a list of analytical
methods, we designed a virtual clipboard for displaying 2D panel
interfaces, together with a virtual stylus for interacting with them
(Fig. 3b). For the panel interface design, we could build on 2D UIs
familiar from computer screens.

We introduce two main panels, each equipped with different
tabs: A control panel and an inspection panel (Fig. 3c, d). The
control panel is the primary interface for network exploration
tasks, including loading networks and node selections (Fig. 3c, e),
adjusting visual properties (Fig. 3f), searching for nodes or node
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sets matching certain attributes contained in the database (Fig. 3g,
h), performing network analysis tasks (Fig. 3i), and working with
subnetworks (Fig. 3j). The inspection panel is used to display
more detailed information on specific tasks and results of
network analyses.

By the modular design of our platform, the UI not only serves
as an interface between the user and the platform, but also as a
communication layer between the VR and web frontend modules
and the analytics backend module: For example, when a button is
pressed in the VR, a request is sent to the analytics module, whose
response, in turn, is passed to the VR module for rendering. We

implemented the UI as a simple JavaScript webpage, allowing
users to easily extend the existing functionality without any
knowledge of the VR engine. Any UI element, such as
dashboards, buttons triggering specific actions in the analytics
module, as well as additional data visualization elements, such as
graphs or bar charts, can be implemented using standard
libraries, such as D3.js.

Integrating immersive exploration in standard workflows. Our
platform is also equipped with a web-based frontend that does
not require any VR hardware and can be accessed through a

Fig. 2 Immersive network exploration. a Green-screen composition showing a user immersed in the genome-scale molecular interaction network.
b Network annotations at different scales: individual nodes are annotated with detailed information shown in a separate inspection panel. Meso-scale node
clusters (representing, for example, biological functions or disease-associated processes) are annotated using floating labels derived from gene set
enrichment and network proximity. Functional landscapes represent global network views in which neighborhoods and their respective annotations are
highlighted. Our platform includes functional landscapes for gene annotations according to gene ontology (GO) and disease associations. c The dynamic
transition functionality allows for exploring different roles of a particular gene or gene set across different contexts. Starting, for example, in a functional
landscape showing the biological processes that a gene set is involved in (here: NADH-dehydrogenase activity; top panel), the positions of all nodes
smoothly transition toward a functional landscape that highlights disease neighborhoods in which the respective genes are located.
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Fig. 3 User interaction design. a Interactions with the 3D network, such as moving the network or selecting individual nodes, are implemented as natural
3D gestures. The movement of the controllers with pressed trigger buttons (indicated in red) is directly translated into the corresponding movement of the
network, allowing the user to drag, rotate, and scale the network. Individual nodes are selected by directly pointing at them. b, All other interactions are
performed through 2D interfaces dedicated to specific tasks. The core functionalities are collected into a control panel that spawns as a virtual clipboard in
one hand, and a virtual stylus in the other, which can also be used to type on a virtual keyboard. VR screenshots showing the (c) control panel and a
particular (d) inspection panel. Inspection panels are used to display the results of a particular action or analysis, such as providing detailed annotations for
a selected node. e–j Screenshots of the different core functionalities, organized as different tabs in the control panel. e Loading (saving) specific node sets
from (to) the database. f Adjusting visual properties of the network. g Searching for nodes and node sets, either by name or any other attribute contained in
the database. Searches can also be combined using logical operators. h List of currently selected nodes. i User interface for running network analytics, such
as random walk with restart from a selected node set. j Highlighting node selections.
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standard web browser. The web module uses the same design as
the control and inspection panels inside the VR environment and
accesses the same database and analytical functionalities, for
example, to create and review selections, perform searches,
explore attributes, and run network analyses. It, therefore, offers a
convenient interface to perform tasks for which the VR envir-
onment is impractical, or when no VR hardware is available. It
further enables easy integration of VR-based modes of explora-
tion with established workflows, computational tools and
resources. In particular, the web module serves as an interface to
load new data into the platform. The import tool includes a data
validation function to ensure the consistency of the uploaded
data. In preparation for a VR session, new networks can be
uploaded, and existing ones updated with additional nodes, links,
or attributes, such as associated diseases or patient variants.
Similarly, the web module can be used after a VR session to
download, review and annotate the results, and to share them
with collaborators.

Data infrastructure. The core data infrastructure consists of a
MySQL database and a Python Flask-based web server, which
may run on the same machines as the VR and web modules, or
on separate ones. This allows for easy integration of existing data
in diverse formats using standard tools, as well as convenient
post-processing of results from VR sessions. We provide a range
of network and node annotation data. As a molecular network
dataset we include the human interactome network of
protein–protein interactions as curated from the HIPPIE
database25. It compiles all known physical protein interactions,
resulting in a largest connected component of 16,376 proteins
linked by 309,355 connections. In addition, we have pre-
populated the database with various frequently used gene anno-
tations. Specifically, we have included known associations
between genes and diseases26–28 or phenotypes29–31; between
genes and biological processes, molecular functions, and cellular
components32,33; pathway annotations11–13; data on tissue-
specific gene expression34; and abstracts of articles from
PubMed relevant to specific genes35.

Implementation of data analysis methods. The analytics module
serves as an intermediary between front- and backend modules
and allows for implementing custom data analysis methods. It is
written in Python, thus enabling the easy integration of numerous
powerful data analysis packages into our platform. We imple-
mented a range of functionalities, representing both general
network exploration tasks, as well as tasks specific to the appli-
cation of candidate gene prioritization presented below: Genes
and gene sets can be retrieved based on attributes contained in
the database, such as functional or disease annotations. For more
complex searches, up to four AND and OR clauses can be
combined. Since biological annotations are often organized in
hierarchical taxonomies, for example, the GO, we also included
these relationships into our search functionality. Likewise,
annotations of selected genes can be retrieved, either directly or
using gene set enrichment analysis. Network-based functionalities
include the identification of a shortest path between two nodes,
identification of connected subgraphs among selected nodes, re-
layout of selected nodes, and neighborhood expansion via ran-
dom walk with restart36.

Application to prioritization of genomic variants. Molecular
networks are an indispensable tool for addressing a wide range of
biomedical research questions4. Examples range from under-
standing the essentiality of individual genes37,38 or the biological
function of interacting proteins7 to elucidating the molecular

mechanisms of complex diseases3 or disease comorbidities1,39. A
particularly successful translational application of molecular
networks is aiding in the genetic diagnosis of patients suffering
from rare diseases that are caused by a single gene defect. The
starting point is next-generation sequencing of a patient’s gen-
ome, typically resulting in hundreds of candidate genes con-
taining variants of unknown significance. Scoring and prioritizing
these candidate genes to single out the one causal gene defect
represents a major bottleneck in the genetic diagnosis process. A
number of methods have been developed for prioritizing genes
based on their context in molecular networks, often augmented
by additional clinical data40–45 (see “Methods” for a discussion of
existing tools). These methods rank candidate genes according to
the network proximity of their products to a given set of seed
genes, i.e., genes known to be implicated in a certain phenotype
or disease. This is based on the fundamental observation that
proteins associated with the same disease are not scattered ran-
domly in molecular networks but aggregate in disease-specific
neighborhoods or ‘disease modules’1,46. While network-based
ranking methods now represent the state-of-the-art in disease
gene prioritization, further inspection of the resulting putative list
of top candidates is still required. Geneticists and clinical experts
of the particular disease phenotype will evaluate each top can-
didate individually, e.g., regarding known gene functions, inter-
action partners or expression patterns in relevant cell types or
tissues, to identify the most promising gene and putative mole-
cular mechanism of the disease. This process is often time con-
suming and performed in an iterative fashion involving both
computational and disease experts, such that an initial explora-
tion of a candidate list may suggest a refinement in the para-
meters of the prioritization method. A visual inspection of the
respective network neighborhoods could facilitate this process,
but is hampered by the large network sizes that are typically
involved at this stage, since the biological context of every can-
didate gene (i.e., the respective network neighborhood of its
product) needs to be carefully evaluated in order to identify the
most promising candidates. Due to the highly connected nature
of the interactome, even a relatively small number of seed and
variant genes can quickly generate a very large number of con-
nected gene products (Fig. 4). Filtering for more manageable
subnetworks a priori is difficult not only because all connected
proteins are potentially relevant, but also because different sub-
network identification methodologies may generate very different
outcomes. Our platform enables inspecting the full network
context and is therefore ideally suited for an interactive
exploration performed by a disease expert, even without specia-
lized computational knowledge. We propose a five-step procedure
outlined in Fig. 5a and apply it to previously published data47

from a specific patient.
Step 1: Data preparation—we start by collecting and curating

all required data, specifically phenotypic and genomic patient
information, a set of related seed genes, and molecular interaction
data. This step is most conveniently performed in the browser-
based web module (Fig. 5b), allowing for a seamless integration
into a user’s standard workflows.

We consider a patient suffering from severe combined immune
deficiency with an unknown genetic cause47. The patient was first
hospitalized by the age of 3 months, presenting with recurrent
severe infections, fever, and oral moniliasis. An immune panel
further revealed a reduced number of T cells and defective T-cell
activation. The patient underwent next-generation whole-genome
sequencing. The resulting genomic variants were filtered accord-
ing to quality and frequency, and scored for deleteriousness using
standard tools as detailed in47. The final list of variants, validated
by Sanger sequencing and segregation analysis, corresponded to
15 candidate genes.
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Seed genes are typically compiled from genes associated with
similar diseases or phenotypes. Our platform provides associa-
tions from HPO (human phenotype ontology)29–31, DisGeNET26

and OMIM (Online Mendelian Inheritance in Man)28 that can be
searched and further inspected to compile a set of seed genes that
best fits the particular use case, for example using the HPO terms
corresponding to the observed clinical phenotypes. In addition,
also custom seed gene sets curated outside of the platform can be
uploaded. For the specific patient considered here, we use an
expert-curated list of 276 genes that underlie inborn errors of
immunity taken from48 as seed genes.

Finally, we use the HIPPIE database25 to compile an
interactome network consisting of 16,376 gene products and
309,355 interactions. The interactome contains 247 out of
276 seed genes and 13 out of 15 candidate genes.

Step 2: Initial exploration of patient data and disease context in
VR— Since both frontends share the same data infrastructure, all
network data and gene lists curated in the web module are
immediately available within the VR module. For a first
orientation within the molecular network, we inspect individual
candidate genes and seed genes. This can be done by selecting
genes of interest in the respective UIs (Fig. 5b, c), by searching for
the name of a particular gene (Fig. 3g) or by directly clicking on a
node in the network. The inspection panel summarizes the
information available in the database, such as known functional
and disease annotations, expression levels in different tissues, as
well as connectivity information. We can explore the broader
network context of a particular gene by switching between
different functional layouts using the dynamic transition
functionality and inspecting the annotated clusters in which the
gene lies (Fig. 2c). For example, an inspection of the position of
different candidate gene products within the GO cellular
component centric functional layout reveals quickly that DOK3
is part of a cluster annotated with the cytoplasmic side of the
plasma membrane, that DOCK2 is localized in the cytoplasm, and
DDX31 in secretory granules, respectively. Note that also
connected neighbors of the selected proteins can be easily
followed throughout the dynamic layout transitions via the
highlighted links (Fig. 5c). This increases the amount of
contextual information that can be quickly assessed substantially
compared to gene-level inspection of conventional annotation
tools. For example, visual inspection of variants and their
connections in different functional layouts suggests that several
variants (DOCK2 and DOK3) have connections with network

neighborhoods associated with cellular metabolism (Fig. 5c),
activation of immune response (DOCK2) or ER stress (DOK3).

Step 3: Disease neighborhood identification—Network-based
approaches for prioritizing candidate genes rely on the existence
of a well-localized seed cluster. We can use the selection isolation
and highlighting features to visually confirm that the products of
the chosen seed genes are indeed significantly interconnected,
forming a largest connected component of 152 out of 247 seed
genes, corresponding to a z-score of 5.8 (empirical p value <
0.00001, obtained from 100k simulations of randomly selected
nodes from the network). We can thus proceed to apply the
random walk with restart algorithm through the dedicated UI
(using restart probability r= 0.9, Fig. 5d). The algorithm ranks
the candidate genes based on their visiting frequency. The results
displayed as a bar chart in the inspection panel indicate three
candidate genes as most promising (DOK3, DOCK2, and
DDX31), all other genes having a visiting probability orders of
magnitudes smaller (Fig. 5d).

Step 4: Detailed variant inspection— To further inspect the
three top candidates and their relationships to the seed cluster, we
first isolate all seed and candidate genes and lay them out
separately. This results in a more cohesive layout, where
connections between seeds and variants can be investigated more
conveniently. We next inspect the top three candidate genes. The
inspection panel reveals that all three genes are expressed in
tissues relevant to the disease phenotype (whole blood, bone
marrow, lymph node, Fig. 5e). All three also have at least one
direct connection to a seed protein (DDX31: 3 seed neighbors;
DOK3: 2; DOCK2: 1). We thus inspect more closely the
phenotypes of the corresponding diseases caused by the
immediately connected seed genes. Of the three seed genes
connected to DDX31, none causes a disease with phenotypes
matching those of our patient. DOK3 interacts with LCK, the
respective LCK deficiency is characterized by several phenotypes
(diarrhea, immunodeficiency, T-cell lymphopenia) closely related
to those of our patient. Similarly, DOCK2 interacts with CD247,
which is implicated in an immunodeficiency with similar clinical
manifestations. We next inspect the functional neighborhoods of
DOK3 and DOCK2 more closely, again using the dynamic
transition functionality. We find that the molecular network
neighborhood of DOCK2 is enriched with several processes
related to immune response, such as T-cell related activities and
immune synapse formation. For DOK3, on the other hand, we
find no enrichment for any immune related processes.

Fig. 4 Static 2D visualization of the seed and variant genes in the interactome. a The 247 seed and 13 variant genes are scattered across several
disconnected subnetworks in the interactome. The largest connected component contains 157 genes (153 seed and 4 variant genes). b Using a Steiner tree
approach60, we can identify a minimal set of linker genes for integrating all seed and variant genes into a single connected component. The resulting
subnetwork consists of N= 334 nodes and M= 1387 links. c Expansion of the subnetwork in (b) with all first neighbors results in N= 10,915 nodes and
M= 261,853 links. d Random walk-based interactome neighborhood around the seed genes obtained by including all genes that are ranked above the top
three variant genes (N= 4052; M= 118,218). All network visualizations were created using the Cytoscape software.
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Fig. 5 Using the platform for prioritizing genomic variants of a rare disease patient. a Overview of the different steps of the procedure, from collecting
relevant data in the web module to performing interactive network analyses in VR and finally post-processing the results. b–f Screenshots illustrating the
individual prioritization steps. b The required data (patient phenotypes and candidate genes, seed genes, network data) are collected and curated using the
web interface. All data are immediately available also in the VR environment thanks to the shared data module infrastructure. c Individual candidate genes
(red) and seed genes are inspected in their network context to identify related biological functions and known disease associations. For example, the blue
links show a connection between the candidate gene DOCK2 and cellular metabolic processes in the functional landscape corresponding to GO biological
processes. d The broader network neighborhood around the seed genes is identified using a random walk with restart algorithm, providing a provisional and
purely network-based ranking of the candidate genes. Left: inspection panel showing a bar plot of the resulting visiting frequencies of the 13 candidate
genes. Right: the seed genes (yellow) are significantly connected, indicating a particular network neighborhood associated with the respective disease.
e Detailed inspection of the most highly ranked candidate genes according to known functions and disease associations within their network neighborhood.
Left: Inspection panel showing expression levels of DOCK2 across different tissues. Right: Connections of DOCK2 in the network view. f, Saving the key
results of the VR exploration for further inspection and follow-up analyses in the web module. Left: Screenshot of the web module summary of the VR
session. Right: Following up on a particular interaction partner of DOCK2, RAC1, in PubMed.
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In summary, the combined evidence of random walk rank,
phenotypes associated with neighbors of known inborn errors of
immunity, and functional enrichment in terms of biological
process and cellular component suggests DOCK2 as the strongest
candidate. For DDX31, no direct neighbor shows a compatible
phenotype, for DOK3 no relationship with immune related
functions could be identified. The possibility to quickly explore
both local and global network neighborhoods in different
functional contexts was critical for gaining these insights that
could not have been obtained either purely algorithmically, nor
by a conventional network analysis platform. Indeed, our
platform’s unique ability to seamlessly zoom in and out between
local and global connection patterns, and between different
functional contexts is critical for an expert to properly evaluate
the biological relevance of each piece of information.

Step 5: Post-processing—In order to follow-up on the insights
gained during the VR session, we save the most relevant pieces of
information for further inspection outside the VR module. The
gene selection panel (Fig. 5f) can be populated with a list of
arbitrary genes of interest. Through the shared data module, this
list is immediately available in the web module. We can thus
utilize the web module functionalities, but also any external
resource for more in-depth inspections of individual genes. We
further provide a clickable 2D representation of the disease
neighborhood consisting of all seed and variant gene products, as
well as linker proteins that connect them. A closer inspection of
the top candidate DOCK2 reveals RAC1 as a neighbor. RAC1 is a
key player in cytoskeletal reorganization, cell migration and
adhesion. The importance of these processes for the immune
response suggests a possible disease mechanism linking DOCK2
mutations to impaired RAC1 activation and subsequent immune
deficiency. This hypothesis can be experimentally tested and was
indeed confirmed in the original publication of the patient47.

Discussion
Biology and medicine are currently undergoing a profound
transformation toward increasingly data driven fields. This
transformation raises both fundamental and practical challenges
on how to best utilize and interpret increasingly large and com-
plex datasets. Our work presents a proof of concept for how
Virtual Reality technology can be leveraged for this purpose. The
immersive 3D environment not only drastically increases
the amount of information that can be visually assessed due to the
much larger available space, but also offers an interactive envir-
onment, natural to human cognition. Molecular networks are an
ideal test case for exploring how VR may offer new approaches
for combining genuinely human capabilities like intuition and
creativity with advanced data science methodologies: First, they
provide a direct and immediately interpretable visual repre-
sentation (nodes and lines corresponding to gene products and
their physical interactions). Second, molecular networks contain
meaningful information across several scales (from individual
nodes to node clusters and global connections) that can only be
fully assessed when the whole network can be inspected. Third,
the interpretation and relevance of specific connection patterns in
the context of a concrete biological question typically requires
deep, domain-specific expertise that can rarely be substituted by
computational methods alone. The presented identification and
functional interpretation of a genomic variant responsible for a
rare disease illustrates how our platform seamlessly integrates
computational tools, diverse data resources and expert inter-
pretation of complex (patho)biological relationships.

Given the key role that molecular networks play in a wide
range of biological questions, we expect that our platform will
find applications beyond the specific test case presented here. Our

platform can be used immediately to explore arbitrary networks
and associated metadata also outside of biology. Virtual Reality,
as well as Augmented and Mixed Reality technologies have
recently become a major focus in the soft- and hardware indus-
tries. We hope that our work contributes to harvesting the
potential of these technologies for better understanding large and
complex data and building the next generation of data explora-
tion platforms. Our modular design paradigm for separating VR
interaction, data analysis, and data storage, may serve as a first
step in this direction and we hope that our open-source imple-
mentation will enable a broad community to build on our work.

Methods
Software availability and requirements. The VRNetzer platform is freely avail-
able on https://github.com/menchelab/VRNetzer. We provide (i) an executable for
the complete VRNetzer platform, (ii) a simplified desktop version that does not
require dedicated VR hardware, as well as the (iii) source code for building and
modifying the VRNetzer backend from scratch.

(i) The executable provides the full VRNetzer platform as a single application.
The application includes the VR module for immersive visualization (requires VR
hardware, see below), which is pre-configured to connect to analytics, data, and
web modules hosted on a public server (requires internet access). The configuration
can be modified to connect to a custom setup, for example locally hosted databases.
Minimal software requirements are a MS Windows 10 operating system and the
Steam VR client software, hardware requirements are detailed below.

(ii) The desktop version does not require dedicated VR hardware and instead
displays the 3D content on a normal computer screen. It requires a Windows 10
operating system. The desktop version provides the first impression of our
platform and can be used for exploring small to medium size networks, as well as
for testing during the development of new functionalities.

(iii) The source code for the data, analytics, UI and web modules is available on
github under https://github.com/menchelab/vrnetzer. The provided source code
allows users to set up their own VRNetzer environment from scratch, including
custom databases, to implement new data analysis methods and design own UIs.

Hardware requirements. Our platform can be divided into a frontend (VR
visualization and interaction components, see Fig. 1c) and a backend (data storage
and analysis components), each with specific hardware requirements.

On the frontend side, viewing and interacting with the immersive VR
environment requires a Steam VR-compatible headset with two controllers and a
computer for graphics rendering. We have tested our platform on both entry level
(Oculus Quest headset tethered to a standard Desktop PC), as well as high-end VR
and computer hardware (HTC Vive headset on a PC with high-performance
graphics card), both provide a good user experience. The primary performance
requirement is the fluid display of 3D graphics, i.e., rendering high-resolution
stereoscopic images at a framerate of 60 Hz or higher. Our VR implementation
enables frame rates over 100 Hz for a continuous operation of all implemented
network visualizations. The required computer hardware specifications of our
platform are thus similar to those of other VR applications or video games with 3D
graphics so that a typical computer setup for gaming will allow for a good user
experience. Table 1 provides three scenarios (low cost, portable and high-end)
including hardware examples and cost estimations. VR hardware has seen a steep
reduction in costs over the last years. We expect this trend to continue, if not
accelerate, thus making VR applications accessible to a wider audience.

The hardware requirements on the backend side depend on the particular use
case. For the specific application of gene variant prioritization presented here, all
analyses and database calls can be performed in around 1 s or less on any of the
hardware setups described in Table 1. For the general case of using our platform to
interactively visualize and analyze arbitrary network data, the performance will
depend mostly on the respective datasets and analyses that are involved. To enable
more demanding analyses, we designed our platform in an open and modular
fashion, see below for a more detailed description of the implementation of the
different components. The backend hardware can be easily adapted and scaled to
the particular performance requirements of a given use case: for simple analysis
tasks, the backend can run on the same computer as the frontend. For more
demanding analyses, either in terms of data size or of computational power, the
data and analytics modules can each be hosted on dedicated machines or even
cloud-based hardware specifically optimized for a particular analysis task.

VR module implementation. The VR module is realized using the open-source
Unreal Engine 424. The engine is responsible for real-time stereo rendering of the
network geometry from the user’s point of view, and for fast and accurate tracking
of the headset and the controllers. It also provides convenient tools for creating
production-quality screenshots and videos. Our implementation makes full usage
of the unique capabilities of an immersive VR environment and the respective
hardware components. For example, we use the high dynamic color range and
additional glow effects to guide the user’s attention to points of interest when
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highlighting search results or selected node clusters. We implemented a custom
voxel shader for drawing large networks with hundreds of thousands of nodes and
links at frame rates over 100 Hz, which are vital for the VR experience. Node
positions and colors are encoded as textures so that the network rendering can be
handled entirely by the GPU. To allow for interactions with the network, the voxel
shader includes a C++ library for collision detection to determine where the user
is pointing at. We further implemented a dynamic link fade functionality to reduce
visual clutter for very dense networks: The set of all links is partitioned into
random subsets that are displayed one after the other, each only for a short period
of time (~1 s). This functionality is particularly convenient for exploring global
network connectivities, since, at any specific time point, the overall network view
remains sparse, while over time, all connections are eventually shown.

Web module implementation. The web module is implemented in Python Flask
with a JavaScript/JQuery frontend. The frontend is designed to resemble the user
interaction, look, and feel of the control panel embedded in the VR module, which
also allows for code sharing between the modules. Additional visualization tools,
including D3.js, allow the user to interactively view small subnetworks. Impor-
tantly, the web module does not query the data module directly, but rather relies on
the analytics module, described below, for data retrieval and processing. Depending
on the requirements of a particular tool to be implemented, for example in terms of
computational performance or data security, the analytics module can be run on
the same computer as the web module, on a different local machine, or in the
cloud, where it can be made globally accessible. In the event that the web and
analytics modules run on the same hardware, they can be run jointly as a single
web server that handles both data and HTML requests.

Data module implementation. The data module represents the shared data sto-
rage infrastructure of the VR module and the web module. It consists of a MySQL
database that communicates with the frontends via the analytics module, which is
implemented as an intermediary Python Flask-based web server.

The MySQL database consists of a central schema, in which different networks
are stored as separate databases, as well as one “meta” schema that stores the details
of these networks. Each network schema is otherwise entirely self-contained,
consisting of canonically defined tables (Fig. 6). The networks are represented by a
link table and a node table. The link table is a join table with each row containing a
pair of nodes. The node table contains only core, unique, and generally invariant
features of a node, such as its name, symbol (if any), or external ID (if any). The
rendering information for nodes, i.e., their 3D coordinates and colors in RGBA
format, is stored in the layouts table. Additional information on a given node is
stored by means of an attributes table (which lists every possible attribute the node
can have) and a nodes-attributes table, which joins the two, and attaches an
optional weight to the relationship (for instance, the level of expression of a
particular gene in a specific tissue). The attribute taxonomies table stores
hierarchical relationships between attributes, such as the relationships between GO
terms. This allows for retrieving implicitly inherited node-attribute associations
that do not have to be stored explicitly. The database can be extended or otherwise
manipulated directly using standard MySQL commands. We also provide the
functionality to upload new data from CSV files through a UI in the web module.
The functionality performs a set of checks to ensure the consistency of the data
prior to integrating it into the database.

We populated the data module with a range of widely used biological datasets:
the three branches of the GO32,33; the disease ontology27 and gene-disease
annotation from DisGeNET26 and OMIM28; the HPO29–31; pathway annotations
from KeGG11, BioGRID12 and REACTOME13; tissue-specific gene expression
data34; and finally PubMed article abstracts relevant to specific genes extracted
from INDRA35.

The molecular network contained in the database has been curated from the
HIPPIE database25, we included all interactions with an available literature
reference. We included six 3D layouts: (i) a spring-based layout generated using a
standard Fruchtermann–Reingold algorithm49; (ii) a random walk-based layout
and four functional landscape layouts representing similarity according to the
(iii–v) three GO branches and (vi) disease annotations, respectively (see below for
details).

Analytics module implementation. The analytics module functions as an inter-
mediary between the VR and web-frontend modules and the database backend
module. Its core function is to receive data requests from the frontend modules,
perform the respective data retrieval and processing, and send the final result back
to the frontend modules. The communication with the front-end modules is done
via HTTP requests, and data are exchanged in the JSON format. The VR and the
web module share the same data retrieval application programming interface
(API), thus removing the need to implement any backend logic twice. The analytics
module is written in Python, which is among the most common, accessible, and
full-featured languages used for data analysis. This allows for incorporating com-
plex analysis tasks without any need for VR programming. Our present analytics
module implementation uses several common open-source packages, notably
Pymysql for exchanging data with the data module, Flask for handling requests
from the frontend modules, and data analysis libraries, such as SciPy50, Scikit-
learn51, and NetworkX23. All network functionalities included in our platform are
implemented using the respective NetworkX functions. For networks where node
attributes are present, we also implemented gene set enrichment analysis using
Fisher’s exact test and Bonferroni correction for multiple hypothesis testing.

Most commonly, the initial request to the analytics module and likewise its
output consist of a set of nodes or attributes, perhaps with some numerical scoring,
such as the visiting frequency for a random walk algorithm. However, our design
also allows for much more general analyses. Practically all data in the database can
be retrieved via the web request API, including subgraphs, enrichment analyses,
articles about individual nodes, etc. As the analytics module source code is written
in Python and provided with the tool, the types of analytical functionality that can
be done are largely unconstrained. In general, the type of analysis done can range
from very minimal (retrieval of data from the database and sending it on formatted
as JSON) to substantial, such as the running of a random walk or shortest-path
algorithm. Longer-running functions (on the order of seconds) are possible, as the
data retrieval process is a background process in the VR and so there is no glitch in
usability while the calculation is running.

UI module implementation. The core functionality of the UI module is to send
requests to the analytics module and in turn receive results and display them within
the VR module. VR applications pose specific challenges regarding UI design.
Conventional screen-based UIs can resort to a plethora of widely recognized visual
metaphors and interaction modes via keyboard or mouse. Not all these metaphors
can be translated to an immersive 3D environment, and VR-specific interaction
modes are scarce and not widely recognized, in particular for applications beyond
computer games. To date, only a few, often experimental data analysis applications
with very specific scopes exist52–58. We thus designed all UI elements from scratch,
combining easily recognizable 2D UI elements with intuitive, VR-specific 3D
interaction modes, wherever one or the other is more appropriate to a particular
task. All 2D interface panels were implemented using standard web technologies,
specifically HTML and JavaScript. This enables the user to customize our platform
and create new interface panels without specialized knowledge in VR game engine
programming. A wide variety of web-based technologies are thus readily available,
such as state-of-the-art dashboard interaction panels, using for example D3.js. This
design further facilitates the integration of VR module interfaces into the web
module and increases the performance by unloading the game thread/VR module.

Note that communication between the VR module and the UI module can also
be used to create a detailed record of a user’s VR exploration session. This wealth of
data could yield interesting insights into the process of visual network analytics and
help design more efficient visualization and interaction tools. We have
implemented a prototype for such a comprehensive tracing functionality which is
described in the online documentation.

Functional network landscapes. We introduce the following procedure for gen-
erating 3D network layouts, in which node coordinates are based on their func-
tional annotations: We start by constructing an n ×m feature matrix F, where n is
the number of nodes in the network, and m the number of different features that
may be assigned to a specific node, for example, the total number of GO terms. The
matrix is populated with Fij= 1, if node i is annotated with feature j (i.e., gene i is
associated with GO term j) and Fij= 0, if not. We then use the dimensionality
reduction method tSNE59 to embed the nodes into 3D space, such that the distance

Table 1 Three exemplary computer and VR hardware configurations for running the VRNetzer platform.

Low cost hardware setup Portable hardware setup High-end hardware setup

Gaming desktop PC with NVIDIA GeForce GTX 1660 SUPER
graphics card (~900€)

Gaming laptop MSI GL75 10
S (~1700€)

Gaming desktop PC with NVIDIA GeForce RTX 3090
graphics card (~5000€)

VR hardware Oculus Quest (~400€) VR hardware Oculus Quest
(~400€)

VR hardware HTC Vive Pro Full Kit(~1300€)

Total cost: ~1300€ ~2100€ ~6300€

The left column represents a minimal stationary setup at low cost, the middle column a portable setup using a laptop computer and the right column a high-end configuration providing highest graphics
quality.
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between nodes reflects the cosine similarity of their respective feature vectors. This
results in a functional landscape, where clusters of nodes emerge that correspond to
groups of genes with similar functional annotations. Finally, we perform a gene set
enrichment analysis (using Fisher’s exact test and Bonferroni correction for mul-
tiple hypothesis testing) to determine the particular annotations that are also
displayed next to the cluster.

We used the procedure to generate layouts and corresponding annotations
based on the three GO branches (biological process, molecular function, and
cellular component), as well as a disease layout based on disease annotations.

We used a slightly modified procedure to generate a 3D layout that is purely
based on network structure: Here, we populated the matrix F, such that Fij is given
by the frequency with which node j is visited by a random walker starting from
node i with restart probability r= 0.9.

Finally, we also included a spring-based layout from a Fruchtermann–Reingold
algorithm implementation49.

Comparison with general network analysis tools. There is a plethora of network
analysis softwares available that offer a wide range of functionalities. Table 2 shows
a selection emphasizing the rich diversity among existing tools in terms of the
following specifications (represented in the columns from left to right): (i) Software
platform, e.g., standalone or web-based software, availability of graphical or pro-
grammatic UIs. (ii) Network visualization type, e.g., static or interactive, 2D or 3D
(‘projected 3D’ refers to 3D renderings on a 2D screen). (iii) Fluid interactions with
small, medium, and genome-scale networks, as tested on the full interactome used
in this study and on random samples of 150 (small) and 1500 (medium) nodes,
respectively. As a minimal criterion for fluid interaction, we required that the user
can smoothly zoom in and out of the network using the same hardware setup as
our VR platform. (iv) Possibility to add custom code for data and network analysis,
e.g., via a provided API or direct code injection. (v) Possibility to modify or add
custom UIs, e.g., via plugins or open UI source code. (vi) Options for incorporating
external datasets, e.g., by connecting a database or importing text files. (vii)
Availability of source code.

The single most important and distinguishing feature of our platform is the VR
network visualization and resulting capability to interactively explore large-scale
networks. In addition, the VRNetzer platform is uniquely designed to allow for
modifying each aspect of software, ranging from the analysis methods to the UI, as
well as the underlying hardware, ranging from a single workstation to distributed
cloud servers.

Comparison with gene annotation and prioritization tools. Several of the gen-
eral tools introduced in Table 2 can in principle be customized to perform
network-based variant prioritization. However, depending on the scope of the
respective software, this may require substantial adaptations. There are also spe-
cialized solutions available that may be more convenient for the particular purpose

of gene annotation and prioritization. In the following, we discuss three of such
specialized tools that are widely used and can exemplarily highlight key features
that distinguish our implementation:

ToppGene44 is a web portal that offers a variety of functionalities, including gene
prioritization. Candidate genes can be prioritized based on functional annotations
or using purely network-based strategies, including an adapted version of the
PageRank algorithm which closely resembles the random walk method used in this
study. These methods have been demonstrated to be effective for common,
polygenic diseases, and should in principle also be applicable in the context of rare,
monogenic diseases. Also functional enrichment can be performed using diverse
annotation data, many of which are also included in our platform (e.g., GO, human
and mouse phenotypes, pathway data, gene expression). There are three major
differences to our platform: First, the pipeline of ToppGene does not include any
interactive network analyses. Second, there is no functionality for uploading own
datasets. The protein–protein interaction network used by ToppGene is based on
data from BIND (Biomolecular Interaction Network Database) with a filter that
results in a high-confidence, yet relatively small network of only 8340 genes and
27,250 interactions. Third, no alternative prioritization methods or additional
analyses can be implemented.

Similar restrictions apply to the The Human Gene Connectome (HGC)45, a
dedicated rare disease gene variant prioritization tool which uses the same basic
methodology as implemented in our exemplary application: A given set of
candidate genes (e.g., variant genes) is ranked by their respective network-based
proximity to a set of core genes (e.g., seed genes known to be associated with a
particular phenotype). HGC relies on the STRING (Search Tool for the Retrieval of
Interacting Genes/Proteins) network and uses the shortest path length to define the
biological distance between core genes and candidates. No customized network
data can be uploaded, and no alternative prioritization algorithms can be used. The
pipeline does not include any interactive network visualizations or analyses and
provides output in the form of a simple table.

A popular web resource that includes a convenient and interactive 2D network
visualization is given by STRING 14. STRING is a comprehensive resource for
known and predicted protein–protein interactions and allows for visualizing and
exploring networks of selected proteins. While STRING does not offer a dedicated
variant prioritization pipeline, the included functionalities, such as clustering nodes
within subnetworks and performing enrichment analysis using various built-in
resources (e.g., GO, Pfam, and KEGG) can also be applied in the context of
network-based prioritization. However, as any 2D network visualization tool, these
analyses are critically limited by the size of the considered subnetworks, larger
networks cannot be meaningfully visualized and explored.

Variant prioritization often involves larger networks, since the respective network
neighborhoods of all candidate genes need to be evaluated. Due to the small-world
property of the interactome even relatively small seed and variant gene sets may lead
to a very large number of connected neighbors, depending on the exact neighborhood
identification strategy: Fig. 4a shows the interactions between seed and variant genes

Fig. 6 Database schema. All data are stored in a MySQL database. The user can upload their own networks using the web module to create and populate
the tables automatically.
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in the interactome. Containing 157 out of 260 genes, the largest connected component
is significantly larger than expected by chance for the same number of randomly
selected genes (z-score= 6.1, empirical p value < 0.00001; obtained from 100k
simulations). This indicates that the genes reside in a particular interactome
neighborhood and serves as a basic test for the applicability of approaches that aim to
explore this neighborhood. Figure 4b–d illustrates different strategies for constructing
such extended neighborhoods: A minimal neighborhood can be constructed using a
Steiner tree algorithm60 which identifies a minimal set of linker genes that connect all
initial genes into a single component (Fig. 4b). The resulting neighborhood is compact
enough to be further investigated using conventional tools. However, the compact size
with only a few additional genes also limits the interpretation, in particular regarding
the biological processes involving the variant genes at the periphery. Alternative
approaches that result in broader, more informative neighborhoods are to consider all
first neighbors (Fig. 4c) or to prioritize nodes using the random walk-based method
described in the manuscript (Fig. 4d). In both cases, the size and complexity of the
resulting subnetworks lead to 2D visualizations that can hardly be interpreted and
offer little insights. The immersive 3D perspective of our platform, on the other hand,
allows for interactive exploration not only of such subnetworks but of the entire
interactome.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available and were downloaded from the websites
of the referenced original studies. Weblinks, version numbers and release dates can be
found in the data availability section on https://github.com/menchelab/VRNetzer.

Code availability
Source code and pre-compiled executables for the VRNetzer platform are available on
https://github.com/menchelab/VRNetzer 61. We used open-source softwares and
programming environments Python (version 3.6), JavaScript (version ES6), MySQL
(version 8.0), as well as the EPIC Unreal engine (version 4). Detailed software and
package dependencies can be found in the dependencies section on https://github.com/
menchelab/VRNetzer.
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