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Network analysis reveals rare disease signatures
across multiple levels of biological organization
Pisanu Buphamalai 1,2, Tomislav Kokotovic1,3,4, Vanja Nagy1,3,4 & Jörg Menche 1,2,5✉

Rare genetic diseases are typically caused by a single gene defect. Despite this clear causal

relationship between genotype and phenotype, identifying the pathobiological mechanisms at

various levels of biological organization remains a practical and conceptual challenge. Here,

we introduce a network approach for evaluating the impact of rare gene defects across

biological scales. We construct a multiplex network consisting of over 20 million gene

relationships that are organized into 46 network layers spanning six major biological scales

between genotype and phenotype. A comprehensive analysis of 3,771 rare diseases reveals

distinct phenotypic modules within individual layers. These modules can be exploited to

mechanistically dissect the impact of gene defects and accurately predict rare disease gene

candidates. Our results show that the disease module formalism can be applied to rare

diseases and generalized beyond physical interaction networks. These findings open up new

venues to apply network-based tools for cross-scale data integration.
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Over the past 2 decades, rapid advances in DNA sequencing
technology allowed us to uncover the genetic basis of over
6000 rare diseases1–3. In contrast to common diseases,

which are typically characterized by a complex interplay between
multiple genetic and environmental factors, rare diseases can often
be pinpointed to a single genetic lesion. Rare diseases thus offer
unique opportunities to mechanistically dissect the relationship
between genetic aberrations and their phenotypic consequences,
which can then inform targeted treatment strategies. For individual
rare diseases, this potential for a molecularly rooted, personalized
medicine could already be demonstrated, for example in rare
immunodeficiencies4–6, neurodevelopmental7,8, and metabolic
disorders9,10. At the same time, the costs and extended timelines of
these individual efforts also highlight the need for novel, systematic
approaches for investigating the large number of rare diseases that
still remain uncharacterized. To this end, several practical and
conceptual challenges need to be overcome:

First, rare disease phenomena cover a wide spectrum, from highly
cell-type or organ-specific phenotypes to heterogeneous, syndromic
diseases that affect the whole body. Our understanding of how a
genetic aberration impacts various scales of biological organization
between genotype and clinical phenotype is very limited. Second, the
enormous complexity within and between different organizational
scales, such as the transcriptome, proteome, intra- or intercellular
communication, also poses important technical challenges: How can
we identify and integrate the most relevant data? Third, the rarity of
many conditions with monogenic origins implies that data are
usually scarce. Traditionally, rare diseases have been studied fol-
lowing a one-gene, one-pathway, one-disease paradigm. A sys-
tematic approach for transferring knowledge from one rare disease
to another, and for investigating differences and commonalities
between different diseases, is still missing.

In this work, we propose a network-based framework for
systematically investigating rare diseases that addresses these
challenges, and, in turn, use the large number of rare diseases
with a well-described genetic origin to deepen our understanding
of disease-associated perturbations of molecular networks. Spe-
cifically, we introduce a multiplex network approach for inte-
grating different network layers that represent different scales of
biological organization ranging from the genome to the tran-
scriptome and the phenome. A systematic characterization of the
network signatures of all rare diseases with known genetic causes
allowed us to identify the connectivity patterns that determine the
importance of a particular scale of biological organization for a
given rare disease. Finally, we explored how these systems-level
insights may help contextualize individual genetic lesions,
investigate the impact of disease heterogeneity, and be translated
into clinically actionable tools for the genetic diagnosis of rare
disease patients with unknown gene defects.

Results
Constructing a gene network bridging molecular and pheno-
typic scales. Rare diseases affect many scales of biological orga-
nization which, conversely, may provide valuable information for
elucidating a particular gene defect. At the genetic level, for
example, interplay between genetic variants can modulate phe-
notypic outcomes11 or even completely rescue disease-associated
variants12. At the protein level, members of the same complex or
pathway are often implicated in similar phenotypes13,14 and
expression patterns of a particular gene can reveal affected cell
types and tissues15–17. Finally, phenotypic similarities with
known human or animal model gene defects can guide the
annotation of genetic variants with unknown consequences18.

To integrate these diverse relationships into a unifying, gene-
centric framework, we constructed a multiplex network

comprised of several layers: The nodes in each layer represent
genes, the links represent their respective relationship at a
particular scale of biological organization, ranging from direct
interactions between gene products at the molecular level to
phenotypic similarity of associated diseases at the phenotype level
(Fig. 1a, b). We compiled information from seven databases and,
where appropriate, applied a range of techniques for extracting
gene relationship, such as bipartite mapping, ontology-based
semantic similarity metrics and correlation-based relationship
quantification, as well as filtering based on both statistical and
network structural criteria19 (Fig. 1c, d and Supplementary Figs. 1
and 2, see Methods for details). The resulting multiplex network
consisted of 46 layers containing over 20 million relationships
between 20,354 genes (Supplementary Data 1 and 2). The
relationships represent six major biological scales: (i) The genome
scale, where links represent genetic interactions derived from
CRISPR screening in 276 cancer cell lines20. (ii) The transcrip-
tome scale, where interactions represent co-expression, i.e., co-
variability of gene transcription levels indicative of higher-level
regulatory mechanisms. We included both pan-tissue and tissue
specific networks derived from RNA-seq data across 53 tissues in
the GTEx database17. (iii) The proteome scale, where links
represent physical interactions between gene products obtained
from the HIPPIE database21. (iv) The pathway scale, where links
represent pathway co-membership derived from the REAC-
TOME database22. (v) The scale of biological processes and
molecular functions, where links represent similar functional
annotations derived from the Gene Ontology23. (vi) The
phenotypic scale, where links represent similarity in annotated
phenotypes derived from the Mammalian and Human Phenotype
Ontologies (MPO and HPO)24,25.

Characterizing the network architectures across biological
scales. To characterize the resulting cross-scale gene relationships,
we first quantified the global similarity between all pairs of net-
work layers A and B by the overlap of their respective sets of
edges E: SAB ¼ jEA \ EBj=minðjEAj; jEBjÞ. The highest similarities
were found within the transcriptomic scale: co-expression net-
works of different tissues have an overlap of up to S ¼ 0:49
(between brain tissues), compared to an average similarity of S ¼
0:05 between networks of other scales. A major contribution to
this elevated similarity is given by a core of links that is preserved
across multiple tissues. We found that the proportion of links that
connect essential genes increases with the number of tissues in
which a particular link is present (Fig. 1e). This suggests that the
common core is related to essential housekeeping activities. To
represent pan-tissue and tissue-specific interactions separately, we
extracted broadly preserved co-expression edges and considered
them as a separate core transcription network layer, consisting of
12,364 nodes and 1,062,924 edges (Supplementary Fig. 1c, d,
Methods). We further combined redundant tissue types, resulting
in a final set of 38 tissue-specific networks used in the down-
stream analyses (Fig. 1f, Methods, Supplementary Data 3). These
tissue-specific networks still form a recognizable cluster within
the multidimensional scaling (MDS) projection of the relative
similarities between all networks (Fig. 1g). The differences
between tissues, however, are comparable with differences to
networks of other scales (median similarity among tissues:
S ¼ 0:043; similarity to other scales: S ¼ 0:018). The clear
separation between most network layers (median similarity
S ¼ 0:033) indicates that each layer contains unique information
(Supplementary Fig. 3b). At the same time, a comparison with
randomized networks reveals that a significant amount of inter-
actions are preserved across levels of organization (Supplemen-
tary Fig. 3c, d), as shown by a significant similarity for 96.5% of
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all network pairs (empirical p-value < 0.05, see Methods). Finally,
we noticed that the relative position of all network layers in
Fig. 1g suggests a representative role for the protein–protein
interaction (PPI) layer, which is located in a central position and
close to the layers that directly encode phenotypic similarities.

We next compared the networks at the different biological
scales in terms of five structural characteristics: genome coverage,

overall connectivity, clustering, assortativity and literature bias
(Fig. 1h, Methods). The results revealed a wide structural
diversity: The network layer with the highest genome coverage
is the PPI scale, covering 17,944 proteins. This is due to the
combination of a large number of literature curated small-scale
experiments and several large-scale screening efforts. Such
systematic, genome-wide measurements also underlie the high
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coverage of the transcriptomic layers (with a total number of
N= 17,432 genes across all tissues, and an average number of
10,527 genes per tissue, Supplementary Fig. 1d, see Methods for
the filtering processes). Our incomplete understanding of how
these molecular interactions translate into biological processes,
however, is indicated by the low coverages observed among the
functional and phenotypic levels (N= 2407 and 3342 for the
molecular function and HPO networks, respectively). The high
connectivity and clustering among these functional layers, in
turn, is the basis for their predictive power for transferring gene
annotations within functional clusters11,20 (e.g., edge density=
1:13 ´ 10�2 and clustering= 0.73 for the co-essentiality network).
The PPI represents the sparsest network (edge density=
2:359 ´ 10�3; average density across all layers= 7:76 ´ 10�3),
which, in part, reflects the incompleteness of currently available
data26. Curiously, the PPI is the only network in our collection
that exhibits a (modest) level of disassortativity (r ¼ �0:08), i.e.,
a tendency of hubs to connect preferentially to low-degree nodes,
a property that was previously suggested to be a universal feature
of biological networks27. Disassortativity may arise when the
neighbors of high-interest nodes are mapped out more exten-
sively than the interaction partners of these neighbors. For the
PPI, this is likely to be the case in network data curated from
hypothesis-driven, small-scale experiments, but can also occur in
unbiased large-scale efforts (Supplementary Fig. 3e, f, Methods).
A further characterization of curated and unbiased subsets of the
PPI (Supplementary Fig. 4a, b, Methods) revealed that the
relatively high literature bias present in the PPI, as measured by
the correlation between the degree of a protein and the number of
associated publications (Spearman’s ρ= 0.59, Supplementary
Fig. 4b), is largely driven by its curated subset, which represents
87% of the full PPI. This emphasizes that despite recent efforts
towards unbiased, high-throughput protein–protein interaction
screening, a large fraction of the currently available PPI network
information still reflects the reductionist, hypothesis driven
research paradigm where new knowledge preferentially accumu-
lates around proteins with an already known important function.
This literature bias is notably absent in all other network layers.

In summary, the structural diversity observed among the
individual network layers reflects both organizational principles
intrinsic to a particular biological scale, as well as technical or
historical details pertaining to the curation process of the
underlying database (Supplementary Fig. 4c–f). We expect that
this diversity further corresponds to complementary pieces of
information contained in the different biological scales, collec-
tively increasing their potential to drive novel insights into the
relationships between rare disease genes.

Identifying cross-scale network signatures of rare diseases. To
investigate the connectivity patterns among rare disease genes, we
collected 3953 genes associated with 3771 rare disease terms from

the Orphanet database, the largest rare disease ontology and
resource for genetic associations (Supplementary Data 4). Col-
lectively, rare diseases represent an extraordinarily rich resource
of causative genetic aberrations and their phenotypic con-
sequences. For individual rare diseases, however, the situation is
the opposite: Over 3501 diseases in the Orphanet database
(~93%) are associated with fewer than five genes. This represents
a major challenge for systematic, comparative rare disease
research in general, and for network-based approaches in parti-
cular: Network approaches are based on the fundamental obser-
vation that genes associated with the same disease are not
scattered randomly in molecular networks, but aggregate in
disease-specific neighborhoods or “disease modules”26,28. How-
ever, the incompleteness of currently available network maps sets
a lower bound for the number of genes that can be recognized as
a connected module. This minimal number was estimated to be
around 20 for the PPI network26, so that individually, only few
rare diseases have a sufficiently large number of associated genes.

We hypothesized that the disease module concept can be
generalized to groups of rare diseases with closely related
phenotypes. Collectively, these related rare diseases could thus
reach the required minimum number of genes to form a
recognizable disease module (Fig. 2a). To test this hypothesis,
we used the hierarchical classification of rare diseases within the
Orphanet Disease Ontology to aggregate rare diseases with
similar phenotypes and collect all genes associated with their
corresponding descendant terms. We identified a total of 26 rare
genetic disease groups that are sufficiently broad or well-studied,
respectively, to result in a number of associated genes required for
network module approaches (i.e., more than 20), while retaining
the pathophysiological specificity of rare disease phenotypes
(Supplementary Fig. 5a). The disease groups range from smaller
groups, such as RASopathy (ORPHA:536391) or rare genetic
vascular diseases (ORPHA:233655) (with 20 and 22 associated
genes, respectively), to large groups with over 1000 associated
genes, such as rare genetic neurological disorder (ORPHA:71859)
or rare developmental defect during embryogenesis (with 1649
and 1598 associated genes each). The average number of genes
per disease group was 339 (Fig. 2b and Supplementary Data 5).
Despite the wide range in the total number of associated genes
per disease group, the average number of genes per disease term
remains comparable across all disease groups, thus ensuring
similar levels of disease specificity across the disease domain. In
addition, there is only little overlap between the disease terms
contained in the different groups, with 90.5% of all disease pairs
being distinct (Jaccard Index < 0.1), indicating that the groups
provide non-redundant disease definitions (Supplementary
Fig. 5b).

We first inspected the network localization of the aggregated
rare disease groups within two-dimensional network embeddings
obtained from the node2vec algorithm29, which aims to preserve

Fig. 1 Construction and characterization of the cross-scale multiplex network. a Data resources for the major biological levels of organization represented
in the multiplex network. b The multiplex network consists of 46 network layers, each representing a particular type of gene relationships, ranging from
genetic interactions to phenotypic similarity. c Methods used for inferring networks: bipartite mapping was used to build gene relationships based on
common annotations, e.g., pathways; semantic similarity was used to define relationships based on annotation similarity; correlation analyses were used to
identify co-expression. d Weighted and dense networks were subsequently filtered based on structural network criteria for extracting the most relevant
interactions. e Co-expressed gene pairs found in a higher number of tissues tend to be essential, reflecting core cellular functions. Edges found in five or
fewer tissues were considered tissue-specific. f Full co-expression profiles are highly similar between tissues and thus redundant (lower triangle). The
removal of core transcription profiles reveals tissue-specific patterns of the co-expression networks (upper triangle). g The multi-dimensional scaling
(MDS) plot based on edge overlap similarity of all networks shows a clear distinction between major types and subtypes of the network layers. h Major
network characteristics for all considered network layers: number of nodes edge density, global clustering, assortativity and social bias, as measured by the
correlation between node degree and number of associated publications. The values of the 38 individual co-expression networks are shown in the form of a
distribution.
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network distances between nodes (Supplementary Fig. 5c,
Methods). Fig. 2c shows the resulting network landscape of the
human phenotypic network with four rare disease groups
highlighted: rare bone, immune, hematologic and neurological
diseases (the complete landscape of all diseases in all networks
can be explored via our MultiOmeExplorer web app:
www.menchelab.com/MultiOmeExplorer, see also Supplementary
Fig. 6). We found that all four disease groups localize within
specific network neighborhoods. Given that the HPO network is
based on phenotypic similarity of individual gene defects, this
localization confirms that aggregating diseases based on disease
ontology relationships indeed leads to groups of phenotypically
related diseases. We further noticed that the different disease
groups cover network areas of varying size, from highly localized
immune diseases to more broadly spread neurological diseases. In
part, this spread can be attributed to the larger number of genes
associated with the latter disease group. More generally, it may
reflect varying degrees of coherence and specificity among the
phenotypic manifestations of the diseases represented within a
particular group. The close relationship between the spread of
disease-associated perturbations within molecular networks and
the heterogeneity of clinical symptoms has previously been shown
for complex diseases30. Similarly, the spread of the rare
neurological disease cluster recapitulates the high level of
comorbidities observed among affected patients. Finally, we
noted that the proximity between neighborhoods is indicative of
disease similarity, e.g., between rare immune and hematologic
diseases, where the interplay between blood and immune system
often leads to similar phenotypes.

We next inspected the network signatures of rare disease
groups across different network layers. Figure 2d shows that rare
genetic cardiac diseases are strongly localized on a heart-specific
co-expression network (heart right ventricle; HRV) and the
human phenotypic similarity network (HPO). The more
dispersed signals on the PPI network and the network of shared
biological processes (GO:BP), on the other hand, suggest that the

respective genes might be involved in a broad range of molecular
processes that cannot be adequately depicted in a two-
dimensional projection.

Quantifying network modularity of rare diseases. The results so
far indicate that the concept of disease modules, observed widely
across complex diseases on PPI networks, can also be generalized
to groups of rare diseases and to other network data representing
relationships beyond the molecular scale of PPIs. Based on the
heterogeneous degrees of modularity for different diseases and
networks observed above, we further hypothesized that the degree
of modularity can be related to the degree of relevance of the
underlying information to a particular disease phenotype. To
investigate this hypothesis and further dissect the characteristics
of rare disease modules across biological scales, we systematically
assessed all rare disease groups across all network layers. We
quantified the level of modularity by the significance of the size of
the largest connected component (LCC) of disease genes on a
given network, as measured by the corresponding z-score com-
pared to random gene sets (Fig. 3a, Methods). Figure 3b shows
the module significance for all rare disease groups on all network
layers summarized in one heatmap. We observed a high degree of
differential modularity, i.e., the levels of localization vary greatly
between disease groups and network layers. The largest number
of significantly localized rare disease groups are found on the PPI
network, the phenotypic networks (HP, MP), the core tran-
scription network, and the network of shared biological processes.
This consistent localization across a wide range of rare diseases
confirms the existence of disease modules also for rare diseases. In
contrast to the core transcription layer observed to be relevant
across multiple disease groups, the tissue-specific co-expression
networks provide a more disease-specific picture with unique
signatures that reflect the molecular mechanisms that underlie a
particular disease group on a given tissue. For example, the wider
localization pattern of rare neurological disease genes in the
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Fig. 2 Rare disease grouping and network mapping reveal network- and disease-specific connectivity patterns. a Rare genetic diseases are typically
associated with only a few genes and therefore remain fragmented on molecular networks. Grouping rare diseases by phenotypic similarity can overcome
data scarcity and result in identifiable disease modules, thus allowing for further network-based inspection. b Voronoi treemap showing the 26 rare genetic
disease groups used in this study. The size of each disease group is proportional to the number of associated genes. c Network landscape obtained using
the node2vec embedding algorithm. Network distances between genes are preserved in the embedding and illustrate differential modularity of different
rare disease groups on the Human phenotype similarity network layer. The bright dots represent disease associated genes and the blue contour map
represents all genes in a network. d Localization of the rare cardiac disease group on different network layers.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26674-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6306 | https://doi.org/10.1038/s41467-021-26674-1 | www.nature.com/naturecommunications 5

http://www.menchelab.com/MultiOmeExplorer
www.nature.com/naturecommunications
www.nature.com/naturecommunications


phenotypic landscape observed in Fig. 2c corresponds to their
significant modularity across co-expression networks in a wide
range of tissues, which, in turn, reflects the often syndromic and
heterogeneous phenotypes of these diseases.

Using differential modularity to contextualize rare disease gene
clusters. The individual layers within the cross-scale network
capture different pathobiological mechanisms. The observed dif-
ferential modularities can thus offer insights into the disease
etiology specific to a particular layer. For example, rare genetic
gastroenterological diseases, a disease group consisting of 92
disease terms with 140 associated genes, were found to be sig-
nificantly localized on five network layers (Fig. 4). Detailed
inspection and enrichment of these submodules (Supplementary

Fig. 6a, b, Methods) enables us to interpret the disease char-
acteristics within each layer: We found that genes causing the
Bardet-Biedl syndrome (BBS) form pronounced clusters in the
phenotypic and PPI layers. Together with the absence of mod-
ularity in other layers, this pinpoints that the emergence of this
particular disease phenotype is mainly determined by interactions
at the protein level, while co-essential, functional or pathway
levels play less important roles. This observation is supported by
our current knowledge of BBS pathological mechanisms: The
proteins encoded by BBS genes form a complex crucial for
transporting vesicles to cilia, a process whose defect is suspected
to be a major cause of BBS31. At the same time, these proteins are
of diverse functional character32 and involved in disparate
pathways33, explaining the lower modularity on the respective
network layers.

Fig. 3 Multiplex network modularity of rare disease groups. a Pipeline for disease module significance assessment. The size of the largest connected
component (LCC) for genes associated with rare genetic disease groups collected from Fig. 2 were used to determine network relevance. b The heatmap
shows the modularity of all rare disease groups across all network layers as measured by the respective module size significance (p < 0.05: *, p < 0.01: **,
p < 0.001: ***; p < 0.0001: ****, Benjamini–Hochberg corrected empirical p-values determined by node randomization, see Methods). In the tissue-specific
network layers, only selected disease groups display pronounced modularity, often recapitulating known mechanisms and tissue specificities of particular
rare diseases, but also revealing novel relationships. Network layers containing relationships that are relevant across biological levels of organization, such
as protein–protein interaction, phenotypic and functional similarity networks, also display modularity across a wide range of disease groups.
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We also observed differential modularity among rare cancer-
related disorders. Pancreatic carcinoma genes are involved in
various apoptotic processes and significantly connected on both
protein and pathway levels, highlighting the BAX and survivin
protein complexes, and FGFR1, SCF-KIT, and PGDF signaling
pathways, respectively. Modulation of gene expression involved in
these processes has been reported to play a key role in pancreatic
tumor growth34,35. Moreover, genes involved in cancers of
gastrointestinal tracts (esophageal, gastric and colorectal cancer)
form a strong cluster on the esophagus co-expression network,
revealing their interconnected roles at the gene regulatory level.

Another notable cluster among rare gastroenterological
diseases is given by the Shwachman-Diamond syndrome: 90%
of all patients have a mutation in the SBDS gene, which is known
to be involved in ribosome maturation, but otherwise poorly
annotated. Recent studies indicate that the remaining 10% of
patients with similar disease phenotypes have mutations in other
genes involved in ribosome biogenesis36,37. The interactions
between these genes and SBDS are only captured in the genetic
(co-essentiality) and the transcriptomic (co-expression) layers.

These observations pave the way for a detailed mechanistic
interpretation of how different network layers contribute to the
etiology of individual rare diseases, as well as for identifying
mechanisms that are shared among phenotypically related rare
diseases.

Modularity as quantification of pathobiological relevance. Our
findings suggest that the significance of the network localization
of rare disease genes on a particular layer of the cross-scale net-
work may be used to quantify the pathobiological relevance of the

respective level of biological organization for the disease. The
information in Fig. 3b could thus be interpreted as a network-
disease relevance score (π) for distinguishing information that
truly reflects the system of interest from unrelated information
and potential noise. Specifically, we hypothesized that if the
associated genes of a disease group are significantly connected on
a particular network, then the network has predictive power for
discovering novel genes associated with the disease. In contrast, if
the genes are scattered on a particular network, then it is likely
uninformative for the discovery process. To test his hypothesis,
we developed an informed multiplex network propagation algo-
rithm, in which the overall probability pm to visit a given layer m
out of all L layers, pm ¼ ∑L

i¼1pðijmÞ, is proportional to its
respective level of relevance πm, which can be achieved by
incorporating the detailed balance condition πmpðmjnÞ ¼
πnpðnjmÞ (Methods).

To validate the potential of this informed propagation
algorithm for disease gene discovery, we performed a 10-fold
cross-validation for the retrieval of associated genes for all disease
groups and assessed the performance through the area under the
receiver operating characteristic curve (AUROC, Fig. 5a). We
compared four different scenarios incorporating (i) only the
single most informative network (i.e., the one with the highest
number of significantly localized disease groups; here: the PPI),
(ii) the single most relevant network for each disease group
(Supplementary Fig. 7a), (iii) all networks and (iv) only the most
relevant networks (i.e., networks with a modularity significance of
p-value < 0.05, Benjamini–Hochberg correction for multiple
hypotheses). We found that all four different sets of networks
performed reasonably well, with AUROC ranging from 0.65 to

Fig. 4 Network modules of rare genetic gastroenterological diseases across different levels of biological organization. Genes implicated in rare
gastroenterological disease form significant modules on five network layers (compare with Fig. 3), which capture relevant relationships on different scales.
Diseases in the disease group exhibit unique connectivity patterns in the network layers where their disease characteristics can be derived. For example, a
strong phenotypic cluster of Bardet-Biedl syndrome genes can be derived from the protein complex (BBSome) whose defects lead to cilia dysfunction,
while pancreatic carcinoma cluster is most observable on the pathway level where its causal genes interact physically and are also member of crucial
signaling pathways. The treemap represents disease entries in Orphanet (leaf terms with at least two gene associations) that belong to the rare genetic
gastroenterological disease group (69 diseases with only one gene association are not shown separately).
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0.95 (Fig. 5b), confirming the general applicability of multiplex
network propagation to rare disease gene prediction. A
comparison between the four methods revealed that incorporat-
ing only relevant network layers (median AUROC= 0.90)
generally outperforms the PPI (median AUROC= 0.73), the
most relevant single layer benchmark (median AUROC= 0.79),
as well as the incorporation of all layers (median AUROC=
0.86), with corresponding Bonferroni–Holm corrected Durbin-
Conover test p-value= 3e-16, 1.22e-6, and 0.002 respectively
(Fig. 5c). We concluded that network modularity thus provides a
network-based criterion to curate and integrate the most relevant
data and levels of biological organization for a specific disease.

Interestingly, we also observed differences in retrieval perfor-
mance related to characteristics of the diseases themselves: We
found that syndromic disease groups, i.e., those with significant
disease modules across multiple tissue types, tend to have lower

retrieval performance and benefit from incorporating all tissue
co-expression networks (Spearman’s ρ=−0.53, p-value= 0.004,
Fig. 5d left panel, Supplementary Fig. 7b). On the one hand, this
poses a challenge for disease groups that manifest various
anatomical features such as rare genetic neurological disorders.
On the other hand, this reflects limitations of broad ORDO
disease group definitions such as rare genetic defects during
embryological development. We further found that the retrieval
performance correlated negatively with the number of genes
associated with a particular disease group (Spearman’s ρ=−0.83,
p-value= 1.94e-6, Fig. 5d right panel). These two factors are
closely related, as both the syndromicity level and overall
heterogeneity tend to increase as more genes are involved in
the disease group. Taken together, these findings indicate that
well defined disease groups with low to moderate number of
associated disease genes are more likely to capture molecular

Fig. 5 Using network modularity as relevance prior in the informed propagation algorithm for gene prioritization. a Schematic overview of the informed
multiplex network propagation algorithm that incorporates modularity as measure of relevance of a particular network level for a given disease group.
b Comparison of 10-fold cross-validation performance in rare disease gene retrieval for different choices of included networks: Informed algorithm with
most relevant network (blue), all networks (green), the PPI (red), and the single most relevant layer for each disease (yellow). Dashed lines show median
value across all folds, shaded areas represent the interquartile range. The retrieval performance indicates that disease mechanisms are generally better
recapitulated by incorporating relevant networks only. c Comparison of the AUROC from all four methods. Utilizing the significant networks lead to more
accurate disease gene retrieval compared to all networks, the single most relevant layer, or the PPI. (Bonferroni-Holm corrected Durbin-Conover test p-
value= 0.026, 1.22e−6, and 3e-16 respectively). Threshold for p-values: p < 0.05:*, p < 0.01:**, p < 0.001:***, p < 0.0001:****; n= 26 rare disease groups
across all network sets. Bounds of box represent 25th and 75th percentiles, center the median, whiskers 10th and 90th percentiles, respectively. d Factors
correlated with the retrieval performance. The algorithm that incorporates all networks can outperform the informed algorithm for diseases with high levels
of syndromicity, i.e., disease that manifest in multiple physiological systems (left, Spearman’s ρ=−0.53, corresponding p-value= 0.004). Decreasing
functional relevance as the number of genes increases also led to lower predictive performance (right, Spearman’s ρ=−0.83, p-value= 1.94e-6). The
corresponding p-value of correlation was determined by Fisher z-transformation, two-sided.
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disease characteristics at a level of specificity that results in better
network-based predictions. This suggests that more fine-grained,
mechanism-based disease definitions, together with high-
resolution phenotyping will aid in further improving the
predictive power of the introduced network methods.

To further dissect the contribution of individual networks and
potential curation biases on the overall predictive power, we
performed several additional benchmarks on different subsets of
the multiplex network (Methods). Our comparisons between
curated, unbiased and size-matched random subsets of the PPI
indicate that the performance is largely driven by network size
rather than potential literature biases in the interaction curation
process (Supplementary Fig. 7c). We also evaluated the
differences in performance upon removing individual layers, as
well as groups of layers from the full multiplex network
(Supplementary Fig. 7d). The results suggest that the performance
is not driven by individual network layers and that the predictive
power of the multiplex network can be best understood as a
collective characteristic of all disease relevant layers.

Application to candidate gene prioritization in rare disease
patients. Based on the performance of the informed multiplex
propagation for retrieving genes across all rare disease groups we
hypothesized that the method can also act as an additional eva-
luation metric for prioritizing genomic variants in individual rare
disease patients. Starting point in a diagnostic setting is next-
generation sequencing of a patient’s genome, typically yielding
rare genomic variants (allele frequency < 1%) in dozens to hun-
dreds of different coding regions, and with unknown con-
sequences. These variants may be further filtered down, for
example based on frequency in the general population, deleter-
iousness scoring, or segregation analysis, resulting in up to a few
dozen high confidence candidate genes38,39. Identifying the one
causal gene among them remains a critical challenge both in
research and in clinical practice (Fig. 6a).

We tailored the informed propagation algorithm to individual
patients by using seed genes associated with patient-specific
phenotypes, combined with the network relevance scores from
the corresponding Orphanet disease group (Supplementary
Fig. 7e). Altogether, this enables us to perform patient-specific
multiplex network propagation to prioritize candidate genes. We
applied the method to filtered lists of genes with rare variants
obtained from a cohort of 139 rare disease patients suffering from
various neurological symptoms with intellectual disability as a
predominant phenotype (Fig. 6b, Supplementary Fig. 7f, g,
Supplementary Data 7, and Methods for details of the cohort).
The causal variants of all patients were already confirmed and
could thus be utilized for benchmarking. After standard methods
of filtering for high confidence variants were exhausted, up to 997
candidate genes per patient remained (mean= 401.2). We found
that our algorithm prioritizes causal genes with an overall
AUROC of 0.95 (Fig. 6c). Furthermore, we benchmarked the
performance of our method against predictions based on various
gene-level properties, using the same data as in the network
construction, specifically (1) pathway information, (2) expression
level information, (3) literature counts and (4) phenotypic
similarity (see Methods for details). Among these methods,
phenotypic similarity was most predictive (AUC= 0.87), fol-
lowed by literature counts (AUC= 0.72), expression information
(AUC= 0.71) and pathway counts (AUC= 0.59). However, the
informed multiplex propagation outperformed all gene-based
methods (p-value= 8.39e-5, DeLong’s test of ROCs between our
approach and the best performing gene-level method, i.e.,
phenotypic similarity).

Note that for the specific use case of gene variant prioritization
in rare disease patients, it is instructive to not only consider the
global ROC-based performance, but also the exact ranking of the
causal gene when assessing the utility of the framework in
research and clinical settings. In our cohort, the multiplex
propagation method placed the true causal gene among the top
five ranked genes for 64 out of 131 patients (48.9%). For the
purely gene-based methods, the causal gene was among the top
five in only between 4 and 11 patients (3.1–8.4%, Fig. 6d).

We also performed an additional benchmark using a temporal-
holdout setting to ensure that the performance of our method is
not primarily driven by confirmatory biases (Supplementary
Fig. 8a, Methods). To this end, we curated a set of 21 patients
with causal genes that were unknown at the time of network
construction, thus minimizing the likelihood that their disease
association contributed to information in any of the curated
databases (Supplementary Fig. 8a, Methods). We found that the
overall performance as measured by the AUROC remained high
for all tested prediction methods. The observed slight reductions
were within the 10-fold interquartile range in most cases and may
also be attributed to the smaller sample size. For example, the
informed multiplex propagation AUROC was reduced from 0.90
to 0.86 (Supplementary Fig. 8b). A closer inspection of the
ranking showed that our framework maintained its proportion of
true causal genes being ranked in the top five gene list, whereas
almost all gene-based approaches had difficulties in retrieving
them at highly ranked positions (Supplementary Fig. 8c, d).

Discussion
In the context of complex diseases, numerous network-based
studies have revealed an intimate relationship between genetic
disease associations, their interaction patterns, and pathophysio-
logical manifestations40,41. Most importantly, it was found that
disease genes are not scattered randomly in molecular networks,
but instead agglomerate in disease-specific modules26. Molecular
networks can thus serve as maps to guide the search for new
disease genes42–44, suggest drug repurposing45–47 and combina-
tion strategies48,49, or elucidate disease relationships26,50, to name
but a few important applications.

Our work expands this concept in several directions: First, we
showed that by aggregating individual gene defects into groups of
related phenotypes, we can apply tools originally developed for
common, polygenic diseases also to rare, monogenic diseases.
Our comprehensive analysis of over 3,584 individual gene defects
revealed that as a group, they exhibit network signatures similar
to those observed for complex diseases. This opens up a wide
range of network medicine tools and concepts to be applied to
rare diseases. Existing tools, for example for prioritizing rare
variant genes, often augmented by additional clinical data51–55,
demonstrate the potential for network-based methods in
this area.

We further showed that the central network medicine concept
of disease modules can be generalized towards multiplex net-
works representing various levels of biological organization.
Previous work relied prominently on physical protein–protein
interactions, which have been mapped out systematically for
nearly two decades13,14,56,57. Our analysis of 46 network layers
containing over 20 million interactions showed that disease
modules can be identified across a wide range of relevant gene
relationships. We further found that the degree of modularity is
indicative of the impact of disease-associated perturbations on a
particular level of biological organization, and thereby determines
the disease relevance of datasets from the respective level. The
performance of the informed propagation algorithm for rare
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disease gene prediction demonstrates the practical utility of this
finding. We expect that the general principle for identifying the
most relevant datasets will be applicable in other contexts as well,
including studies on cancer and other complex diseases. Indeed,
as biomedical research is becoming more data intensive in gen-
eral, and more biological network maps become available in
particular58,59, new strategies for integrating diverse data are
required. A range of methodologies have been developed for this
purpose, including network-based strategies60–63 and advanced
machine-learning approaches64–66. Our results could potentially
enhance these strategies by using disease modularity as a criterion
for curating and excluding potentially uninformative datasets.

Finally, to enable a broad community of researchers in the
areas of rare disease, network medicine or biomedical data inte-
gration to build on our work, all datasets and algorithms pre-
sented in this work are publicly available.

Methods
Resources and network construction. Resources used in the multiplex network
construction are listed in Table 1. We incorporated seven major databases, each
representing distinct biological layers.

Protein–protein Interactions. Protein–protein interaction data was taken from the
HIPPIE database21 and filtered for interactions with supporting PubMed articles.
To assess the impact of interactions collected from small-scale, hypothesis-driven
experiments compared to those stemming from large-scale, unbiased screens, we
further collected the most recent versions of the two largest systematic high-

throughput PPI studies: the Human Reference Interactome (HuRI) based on yeast
two-hybrid (Y2H) screening13 (retrieved from http://www.interactome-atlas.org/
data/HuRI.tsv on 31 May 2021), and the BioPlex interactome constructed from
affinity-purification mass spectrometry profiling67 (retrieved from https://
bioplex.hms.harvard.edu/data/BioPlex_293T_Network_10K_Dec_2019.tsv, on 31
May 2021). The PPI network layer can therefore be split into two categories: the
unbiased PPI for interactions that are contained in any of these two resources, and
the curated PPI for the remaining edges (Supplementary Fig. 4a).

Tissue Co-expression networks. Transcriptomic data is one of the most abundant
publicly available high-throughput data. Differential expression profiles across
tissues and cell types have been widely analyzed as a probe for disease specificity. In
the context of network analyses, expression data has been used in two major ways:
as a means to filter out genes from generic interactomes based on their expression
level in a particular context of interest13,60, and for constructing co-expression
networks. Here, we follow the latter approach, and use co-expression as a proxy for
tissue- or cell type-specific functional and regulatory relationships. As primary
resource we used the Genotype-Tissue Expression (GTEx) data68,69, which pro-
vides genome-scale expression profiles across 53 human tissues that have been used
previously to construct co-expression networks15,16. We used the following
pipeline:

1. We downloaded the GTEx expression profiles in the format of transcripts
per million (TPMs) from the Expression Atlas (https://www.ebi.ac.uk/gxa/
experiments/E-MTAB-5214/). The data was subsequently processed using
the bioconductor package SummarizedExperiment (https://
bioconductor.org/packages/release/bioc/html/
SummarizedExperiment.html).

2. Tissues with a number of samples less than a minimum quality threshold
similar to the GTEx Portal (n ≥ 70) were removed. These included fallopian
tube (n= 14), ectocervix (n= 12), endocervix (n= 10) and urinary bladder
(n= 24).

Fig. 6 Patient cohort and gene prioritization performance. a Data access and filtering: Querying for intellectual disability phenotypes resulted in 819
patients, 131 of which were solved cases with rare and pathogenic variants in an average of over 400 genes. b Basic characteristics of patient variants,
associated phenotypes and diagnoses. c ROC curves for the performance of causal gene prioritization of our approach (yellow, AUROC== 0.95) and
various gene level based benchmarks (AUROC between 0.59 and 0.87). d Number of patients for which the true causal gene was prioritized among the top
five, 10, and 20 for all considered methods. The informed multiplex propagation placed the true causal gene among the top five ranked genes for 64 out of
131 patients (48.9%). For the purely gene-based methods, the causal gene was among the top five in only between 4 and 11 patients (3.1–8.4%).
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3. For the remaining 49 tissues, we further merged tissues with similar
expression profiles to reduce redundancy and increase signals70. Most
notably, brain regions (13 tissues) were merged into three major groups and
relabeled by their anatomical entities (Supplementary Fig. 1a). This process
not only merged potentially redundant tissues, but also increased sample
sizes for some tissue groups that would otherwise have been undersampled.
The resulting 38 tissue groups along with the sample sizes are shown in
Supplementary Data 3.

4. The GTEx database contains an average of 29,779 ± 1972 transcripts per
tissue. We next filtered for protein coding transcripts (e.g., exclusion of
pseudogenes, long non-coding (lnc) RNAs, miRNAs, and other non-coding
biotypes) by discarding transcripts without corresponding accession
numbers in the UniProt Knowledgebase (www.uniprot.org) according to a
query of MyGene (https://mygene.info, retrieved on 21 August 2019).
Supplementary Data 10 lists the 21,310 transcripts in consideration,
resulting in 17,716 ± 369 protein-coding genes per tissue (Supplementary
Fig. 1b).

5. For each tissue, Spearman’s correlation coefficient (ρ) of all protein-coding
gene pairs was used to determine the strength of their respective co-
expression levels. Gene pairs with |ρ| ≤ 0.75 were discarded, resulting in
11,161 ± 1082 genes per tissue.

6. We applied a disparity filter19 to remove weak, structurally redundant edges
and to extract the backbone of each network. Edges with a corresponding
disparity filter p-value < 0.05 were selected. This process yielded
10,526 ± 1825 genes per tissue. Note that even though the number of nodes
decreased only slightly, the disparity filter excluded a large amount of
spurious correlations (median number of interactions before and after=
1.83e6 and 4.78e5, respectively, Supplementary Fig. 1b (right)). The
disparity filter represents a dynamic cutoff, where lowly expressed genes
tend to be removed and highly expressed genes tend to remain, while also
allowing for the detection of lowly expressed genes that are strongly
correlated with other genes (Supplementary Fig. 1e). As a reference, we also
show the comparable reduction of remaining genes if they were filtered
using a standard expression threshold of TPM > 1 (13,567 ± 874 genes,
Supplementary Fig. 1b).

The resulting networks consist of edges that are shared across multiple tissues
(core transcriptional modules), as well as edges that are only present in a small
number of tissues (tissue-specific modules). We considered edges present in less
than five tissues as tissue-specific, and edges present in at least five tissues as core
transcriptional modules (Supplementary Fig. 1c, d).

Ontology-derived functional and phenotypic similarity network. To capture gene
relationships on functional and phenotypic levels, we incorporated expert curated
data and systematic ontologies. To transform ontological annotations into gene-
centric networks, we defined that two genes are functionally or phenotypically
connected if they are semantically similar based on the corresponding ontology71,72

as follows:
We first compared several widely used measures of semantic similarity to

ensure that the scores are robust for our purposes:

1. Information content (IC)-based similarity based on Resnik’s method73. The
similarity of two terms is derived from their most informative common
ancestor (MICA) in the ontology. Given ontology terms t1 and t2, their
pairwise similarity is given by simResnikðt1; t2Þ ¼ ICðMICAÞ, where
ICðtÞ ¼ �logðpðtÞÞ, p(t) represents the frequency of term t defined by pðtÞ ¼
nt
N ; nt denotes the number of descendants of term t, and N the number of
descendants of the root term of interest in the ontology tree.

2. Information content (IC)-based similarity based on Lin’s method74. Unlike
Resnik’s method, Lin’s similarity measure restricts the value to be in the range
between zero and one, and is given by simLinðt1; t2Þ ¼ 2ICðMICAÞ

ICðt1ÞþICðt2Þ 2 ½0; 1�.
3. After collecting all pairwise term similarities for annotations of two genes,

we next employed the Best-Match Average (BMA) strategy to combine them
into a single gene similarity score. Their pairwise similarity of genes g1 and
g2with m and n annotated terms, respectively, is given by

simBMAðg1; g2Þ ¼ ∑m
i¼1colmaxðSÞþrowmaxðSÞ

mþn ;where S 2 Rmxn is the matrix con-
taining the pairwise similarity values of the ontology terms associated with
the two genes, rowmaxðSÞ and colmaxðSÞ are vectors of length m and n,
containing the maximum similarity values across all rows and columns of
matrix S.

4. Frequency-based similarity, where the similarity between two genes is given
by the number of shared annotations, i.e., simfreqðg1; g2Þ ¼ jTg1 \ Tg2j,
where Tgk is the set of ontology terms (including ancestor terms) associated
with gene k.

We found that the respective similarity values are strongly correlated, indicating
that the resulting networks are robust against details of the used methods
(Supplementary Fig. 2a). We chose to proceed with the IC-based Resnik’s method
with the Best-Match Average (BMA) combination strategy, as it has been
demonstrated to both be among the simplest methods, while also providing the
most reliable performances across different tasks71,75. We used the R packages
GoSemSim76 and OntologyX77 to navigate and compute the similarity
measurements.

Gene pairs with minimal similarity value, i.e., pairs whose only common
annotation is the root term of the considered ontology branch (i.e., “Molecular
Function” or “Biological Process”) were considered as unrelated and therefore
removed from further consideration. For example, there are over 21M gene pairs
connected at this level in the GO (BP) branch (similar score= 0.447,
Supplementary Fig. 2b). This led to the removal of 230 genes with no commonly
associated MICA with other genes beyond the root term.

All ontology-based networks (GO:BP, GO:MF, MPO and HPO) were
constructed according to the following procedure summarized in Supplementary
Fig. 2c: Pairwise similarity scores given by the procedures above resulted in dense
weighted networks. We further applied the disparity filter19 to extract the backbone
of the network and discard structural redundant edges (gene pairs with
corresponding disparity p-value > 0.05). The disparity filter provides a dynamic
cutoff that considers the strength of the similarity scores of a gene in reference with
all similarity values of its neighbors. Similar to using a hard cutoff, edges between
gene pairs with low similarity scores (e.g., 0<simðg1g2Þ<3 in GO:BP) are removed
while those with high similarity scores (simðg1g2Þ>6) are virtually unaffected.
Edges with medium similarity scores (3<simðg1g2Þ<6) may either remain or be
discarded based on their similarity score with respect to all other connected genes
(Supplementary Fig. 2d).

Overall, networks derived from semantic similarity measures favor gene pairs that
are similarly annotated over highly, but diversely annotated gene pairs Supplementary
Fig. 2e). Gene pairs with high similarity scores often belong to the same protein
families such as the ER membrane protein complexes (EMC), olfactory receptors
(OR), and membrane transporters, and tend to share a large fraction of annotated GO
terms (Supplementary Fig. 2e, right). We further demonstrated this for the example of
GO terms associated with TP53 (gene with highest number of publications) and
TGFB1 (gene with highest number of associated GO terms). While both genes are
well characterized, with 87 and 176 annotated GO terms, respectively, only ten
annotations are shared, indicating that they are involved in distinct biological
processes (Supplementary Fig. 2f). As a result, the computed similarity score and
subsequent disparity p-value failed to reach the significance threshold, meaning that
the two genes are not connected (Supplementary Fig. 2e). This effect is observed
across most well characterized genes, leading to the slightly negative literature bias of
ontology-derived networks (Fig. 1h and Supplementary Fig. 4c–f). We found that
densely connected clusters within the constructed networks recapitulate biological
processes corresponding to shared terms on their respective ontologies
(Supplementary Fig. 3a, clusters with Bonferroni-Holm corrected enrichment
hypergeometric p-value < 1e-20 were labeled).

Pathway co-membership networks. Gene-pathway associations were downloaded
from the Reactome website https://reactome.org/download-data/ (accessed 25
January 2019) under the Reactome Pathways Gene Set section. For every gene pair,
we collected the number of shared pathway annotations. In the pathway co-
membership network construction, two genes were connected if they share at least
five Reactome pathway annotations (to prevent associations due to common
pathways).

Table 1 Resources used for the multiplex network construction.

Layer representation source

Biological process GO (BP) release 2018-11-24, retrieved from http://purl.obolibrary.org/obo/go/go-basic.obo
Molecular function GO (MF) release 2018-11-24, retrieved from http://purl.obolibrary.org/obo/go/go-basic.obo
Human phenotype HPO release 2018-10-09, retrieved from http://purl.obolibrary.org/obo/hp.obo
Mammalian phenotype MPO release 2018-11-23, retrieved from http://purl.obolibrary.org/obo/mp.obo
Co-essentiality co-essential networks inferred from correlated fitness profile across diverse cancer cell lines from Kim et al.20.
Protein-protein interaction HIPPIE v2.2 (release 2019-02-14), retrieved from http://cbdm-01.zdv.uni-mainz.de/mschaefer/hippie/download.php
Co-pathway membership Reactome Pathways Gene Set, retrieved on 30 January 2019 from https://reactome.org/download/current/

ReactomePathways.gmt.zip
Tissue co-expression RNA-seq from GTEx v7, retrieved from the Expression Atlas https://www.ebi.ac.uk/gxa/experiments/E-MTAB-5214/
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Disparity filter. To extract the backbone of dense, weighted networks resulting from
semantic and correlation-based construction, we applied a disparity filter19. For a
given network, we computed a p-value for all edges between nodes i and j as
pij ¼ ð1� wijÞk�1, where wij is the edge weight for node i normalized over all its
edges, and k denotes its degree. We only kept edges for which both pij and pji
reached a threshold significance level.

All network data and corresponding details are available in Supplementary
Data 1, 2.

Measurements of network characteristics. The network characteristics shown in
Fig. 1 h (number of nodes and edges, clustering and assortativity) were computed
using the R package igraph78 (https://igraph.org).

For a global assessment of the literature bias present in a particular network we
used the Spearman’s correlation coefficient between the network degree of a gene
and the number of publications mentioning the gene. The number of publications
was queried using the INDRA python module 78 (http://www.indra.bio, accessed
on 12 April 2019), the resulting data is provided in Supplementary Data 8.

For a more local assessment of correlation structures within the connection
patterns of a network, we used the local assortativity (ρ), a node-level property
whose sum over all nodes is equal to the assortativity of the network79. It is defined

as ρ ¼ jðjþ1Þð�k�μq Þ
2Mσq

2 , where j is the excess degree, �k the average excess degree, and M

the number of edges in the network. The excess degree follows the distribution
qðkÞ ¼ ðkþ1Þpðkþ1Þ

�k
. We employed the concept to demonstrate that the overall

disassortativity can also be present among interactions derived from high-
throughput studies such as the BioPlex network (Supplementary Fig. 3f).

Network similarity computation and randomization. Given a pair of networks A
and B with the set of edges EA and EB respectively, we quantified the network
similarity using the edge overlap index (SAB):

SAB ¼ jEA \ EBj
minðjEAj; jEBjÞ

We used a dissimilarity measure defined as dAB ¼ 1� SAB to construct a 2D map
that preserves network dissimilarities by employing Kruskal’s non-metric multi-
dimensional scaling (R package MASS). Finally, we compared the measured
similarity of each network pair to random expectation: For each network, we
performed 10 permutations of node indices, resulting in 100 permutations for a
network pair, which we used as random reference distribution to assess the mea-
sured overlap similarity. We then computed the z-score and corresponding
empirical p-value. A network pair with p-value < 0.05 is considered significantly
similar (Supplementary Fig. 3c, d).

Characterization of co-expression network with essentiality data. We char-
acterized our tissue-specific co-expression networks constructed based on GTEx
expression data as follows: We hypothesized that genes that are highly co-expressed
across several tissues are likely required for cellular development and survival, and
should show a strong tendency of being essential genes. To test this hypothesis, we
used the list of human essential genes from the OGEE database (v2, retrieved on 16
April 2019. Supplementary Data 9).

Rare genetic disease gene association data. The structure of the Orphanet Rare
Disease Ontology was queried and processed using the R interface of the Ontology
Lookup Service (https://lgatto.github.io/rols/index.html). We considered all des-
cendant terms of “Rare genetic disease” (Orphanet:98053) that were associated
with at least 20 genes, resulting in 26 rare genetic disease groups. The disease
groups and all disease-gene associations can be found in Supplementary Data 5).

Disease-network landscapes via node2vec embedding algorithm. To visualize
large (genome-scale) networks where the modularity can be difficult to observe, we
employed the python3 implementation of the node2vec graph embedding
algorithm29 (https://github.com/eliorc/node2vec). Nodes were embedded into 64-
dimensional Euclidean space and subsequently projected on a 2D plane using
t-SNE80 (Supplementary Fig. 6c). Note that the predictions in this work were
performed on the original network space as the resulting coordinates in the
embedded Euclidean space are subject to the parameterization in both the node
embedding and the dimensionality reduction. Since different node embedding
techniques and parameter sets may preserve different topological structures81–83,
their reliability may vary depending on the particular machine learning task84.

Identification of the significance of a disease module. The size of the largest
connected component of random subsets of m nodes in a network is expected to
follow a normal distribution, provided that m is larger than the percolation
threshold. We can therefore empirically estimate the significance of a given module
size by the z-score and corresponding p-value compared to randomly selected
nodes. Networks in which the size of the largest connected component of the genes

associated with a particular disease exceeded a threshold of p-value < 0.05 (after
Benjamini–Hochberg correction) were considered significant.

Gene ID mapping, homolog conversion, and enrichment analysis. All human
gene identifiers from different resources were mapped to NCBI standard symbols.
For mouse to human gene mapping, we used the Moue Genome Informatics
homologs mapping http://www.informatics.jax.org/downloads/reports/index.html.

Gene enrichment results were queried using EnrichR85.

Informed multiplex network propagation algorithm. The standard multiplex
network propagation is defined by an equal probability for the random walker to
visit any neighbor from the current layer m or any other layer n86. For L network
layers with N nodes each, this can be represented through the supra-adjacency
matrix S 2 RNL ´NL :

S ¼

A1 I ¼ I

I A2 ¼ I

..

. ..
. . .

. ..
.

I I ¼ AL

2
66664

3
77775

where Am is the adjacency matrix for network layer m (m 2 f1:::Lg) and I denotes
the identity matrix.

We extended this standard algorithm towards an informed propagation method
where the walker visits more relevant layers with higher probability. We quantify
the relevance of a network m for a disease group d by the corresponding z-score
zdm of the largest connected component of associated genes. We considered all
network layers with zdm ≥ 1:645 (corresponding to the 95% confidence level under
normal distribution) as informative and defined the relevance score (πdm) as the
normalized z-score across all informative layers:

πdm ¼ zdm=∑
m
zdmand ∑

m
πdm ¼ 1

The relevance score πdm was then used to determine the transition probability
pðmjnÞ between layers n an m, so that the walker visits more informative layers
with a higher probability corresponding to their respective πdm values. This is
achieved by employing the concept of reversible Markov chain Monte Carlo that
requires the following detailed balance condition:

πmpðmjnÞ ¼ πnpðnjmÞ
To satisfy this condition, we define pðmjnÞ ¼ 1

Lminð1; πmπn Þ and
pðmjmÞ ¼ 1� ∑

n≠m
pðmjnÞ. The informed supra-adjacency matrix eS can thus be

written as

eS ¼ p � S ¼

p11A1 p12I ¼ p1LI

p21I p22A2 ¼ p2LI

..

. ..
. . .

. ..
.

pL1I pL2I ¼ pLLAL

2
66664

3
77775

Finally, we incorporate the informed supra-adjacency matrix into the random
walk with restart algorithm:

ptþ1 ¼ ð1� rÞeSpt þ rp0

where p0 is the initial visiting probability vector with p0ðiÞ ¼ 1=k if node i is one of
k seed nodes, and p0ðiÞ ¼ 0 otherwise. pt is the visiting probability at iteration step t,
and r 2 ½0; 1� is the restart probability. In this analysis, we chose r= 0.7.

The final visiting probability (p) can be obtained numerically when the
convergence criteria are met (jptþ1 � pt j ¼ 0). The visiting probability of a node is
the arithmetic mean of the visiting probability across all layers. In retrieval tasks,
nodes are ranked based on this final visiting probability. Seed nodes are omitted
from the ranking.

Cross-validation performance assessment. The prediction performance was
assessed using 10-fold cross-validation for retrieving genes associated with indi-
vidual rare disease groups. Area under the receiver operating characteristic curve
(AUROC) computations and plots were performed using the cvAUC and pROC
packages in R. Differences between ROCs were evaluated using the two-sided
DeLong’s test87.

We first considered four different settings: (1) baseline single layer (the PPI), (2)
the most relevant single layer for each disease according to the lowest LCC z-score,
(3) all network layers, and (4) all relevant network layers, i.e., those with a
significant LCC z-score for the disease (p-value < 0.05, Benjamini–Hochberg
correction for multiple hypotheses).

To further investigate the contribution of individual layers, as well as potential
curation biases on the overall predictive power, we performed several additional
benchmarks on different subsets of the multiplex network:

We first analyzed the impact of interactions curated from small-scale
experiments on the prediction performance of the PPI network layer
(Supplementary Fig. 4a). To this end, we considered two subsets of the full PPI, an
unbiased subset consisting of interactions from systematic high-throughput
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studies, and a curated subset consisting of all other interactions (see above). The
unbiased PPI contributes to 13% of all interactions in the full PPI, and, as expected,
shows a less pronounced literature bias (Supplementary Fig. 6b). While the curated
PPI performs equally well as the full PPI in the disease gene prediction task, the
performance of the unbiased PPI drops significantly (median AUROC= 0.62, p-
value= 1.76e-9, FDR-corrected Durbin-Conover non-parametric test,
Supplementary Fig. 7c). To assess the extent to which the reduced size of the
unbiased PPI contributes to this drop, we repeated the analysis on ten random
subsets of the curated PPI that are of the same size as the unbiased PPI subset. We
found that these random subnetworks have a performance comparable to the one
of the unbiased PPI (with a median AUROC of 0.58 even slightly reduced,
Supplementary Fig. 7c). This indicates that the performance of the PPI network is
mainly driven by its size, rather than details of the interaction curation. This, in
turn, suggests that confirmatory biases that may result from including curated
interaction data are likely to play only a minor role for the overall performance, at
least for PPI data.

We next assessed the prediction performance of the multiplex network upon
removing other network layers derived from curated databases, specifically the
layers based on shared pathway membership, phenotypic similarity (HPO and
MPO), and GO (BP and MF) similarity. We first computed the 10-fold cross-
validation AUROC after removing each of these layers individually. For most
layers, we observed only a slight drop in the performance (median AUROC
between 0.87 and 0.88; Supplementary Fig. 7d), indicating that the core
connectivity of disease genes across different layers is robust against the removal of
individual layers. The only layer with a stronger impact is the HPO phenotype
layers, whose removal resulted in a reduction of AUROC to 0.80 (p-value= 0.0003,
FDR-corrected Durbin-Conover non-parametric test). This is not unexpected given
the strong predictive power of phenotypes as close proxies to diseases which forms
the basis for their usage in clinical settings and is documented in the literature1,2, as
well as in the gene-level benchmarks discussed in the patient candidate gene
prioritization below.

Finally, we determined the predictive performance of the multiplex network
after removing all layers that involve curated data (Reactome, GO, HP, MP, and
PPI), leaving only relevant co-expression and co-essentiality networks for the
propagation. While these high-throughput data alone do carry predictive power,
their performance was significantly lower compared to using all available data
sources (AUROC= 0.71, p-value= 1.17e-11). Interestingly, we also observed an
occasional increase in performance, such as for rare genetic endocrine diseases, one
of the worst performing disease groups in the reference setting (AUROC increased
from 0.64 to 0.71). The propagation only took place on the adipose tissue co-
expression network (ADS), which, in addition to its traditional role for excess lipid
storage, has recently been recognized as an endocrine organ16,17.

Taken together, these results suggest that the predictive power of the multiplex
network can be best understood as a collective characteristic of all disease relevant
layers, rather than being primarily driven by specific individual layers.

Cohort of patients with intellectual disability. We first developed and tested our
method on a locally available, well-controlled cohort of patients with intellectual
disability (ID), before applying it to a much larger cohort obtained from the RD-
Connect Genome-Phenome Analysis Platform (GPAP)88. To conduct a temporal-
holdout benchmarking, we also curated a subset of the RD-Connect cohort con-
taining patients with causal genes discovered after all data used in the network
construction was retrieved. The details of the three cohorts are as follows:

Local cohort. We gained access to variant data from eight patients with confirmed
causal gene (two females and six males aged between three to twenty years old; see
Supplementary Data 11 for details). The recruitment was based on the referral by
clinicians, with the purpose of genetic testing and there was no compensation
involved. Informed consents were signed by the patients or their legal guardians
and the processes were reviewed by Ethics Committee of the Medical University of
Vienna; and/or Haunerschen Kinderspital, Munich, Germany; Servicio di Con-
sulenza Genetica, Bolzano, Italy; University Hospital Zagreb, Zagreb, Croatia;
General Hospital Varazdin, Varazdin, Croatia; and Tehran University of Medical
Sciences, Tehran, Iran in accordance with the Declaration of Helsinki. All patient
variant data were obtained from exome-sequencing performed at the Biomedical
Sequencing Facility (BSF) at the CeMM Center for Molecular Medicine of the
Austrian Academy of Sciences (CeMM). Genomic DNA was extracted (QIAamp
DNA Mini Kit, Qiagen) from whole blood from patients, parents and participating
siblings. Quantity and quality of patient DNA were validated by Qubit 2.0
Fluorometric Quantitation system (Life Technologies). Exome libraries were pre-
pared using the Nextera DNA Flex Exome Library Prep Kit (Illumina). Genomic
DNA was tagmented, size-selected and amplified followed by two rounds of
hybridization with biotinylated baits and capture with streptavidin-conjugated
magnetic beads. After enrichment, library fragments representing in total 45Mb
coding region were amplified and size-selected. Final library pools were quality
controlled and sequenced on a HiSeq 3000 instrument (Illumina) using 75 bp
paired-end chemistry. DNA sequences were mapped to GRCh37 (hg19) version of
human reference genome using Burrows-Wheeler Aligner with default parameters.

Single nucleotide variants (SNVs) and indels were annotated with gnomAD89,
CADD-Phred90, dbSNP91 and ClinVar92 data. Subsequent filtering of remaining
variants of interest was based on the inheritance pattern, variant type (high or
moderate impact as classified by Ensembl database), allele frequency (<1%) in
gnomAD database, and gene lists of interest in relation to the patient’s symptoms
annotated by Human Phenotype Ontology (HPO).

Genes associated with HPO terms describing a patient’s major symptoms were
used as patient-specific seed genes (Supplementary Fig. 7 f), weighted by the
frequency of association, i.e., a gene will be given a higher weight if it is associated
with more than one phenotype found in the patient. After standard methods of
filtering for high confidence variants were exhausted, up to 46 candidate genes
remained, with an average number of 16 candidate genes per patient. Our patient-
specific multiplex network propagation ranked the validated causal gene first in
four cases, in all cases it was among the top five predictions (Supplementary
Fig. 7g). Strikingly, the algorithm correctly pinpointed the causal gene in the two
most complex cases, where patients presented with high confidence variants from
46 and 33 genes, respectively.

RD-Connect cohort. To overcome the small number of patients available in our
local cohort, we have gained access to RD-Connect Genome-Phenome Analysis
Platform (GPAP), one of the largest global infrastructures for storing and sharing
genotype and phenotype data of rare disease patients (https://platform.rd-
connect.eu/)88. To match our local cohort, we queried patients whose phenotypes
are characterized by intellectual disability (HPO term HP:0001249). Of the
resulting 819 patients, 131 were solved cases, i.e., patients with a confirmed causal
variant that could thus be utilized for benchmarking (Fig. 6a). The inclusion of
these patients expanded the original sample size by a factor of over 16. The variants
were filtered for highly stringent pathogenicity include these following tools and
criteria: (1) Variant type: SNV, (2) SNV effect prediction: Mutation Taster—A
(Annotated and disease causing) and D (Disease causing); PolyPhen2—D (Possibly
damaging) and P (Possibly damaging); SIFT—D (Damaging), CADD score ≥ 20,
(3) Minor Allele Frequency: gnomAD allele frequency < 0.01; 1000Genome Protect
AF < 0.01.

Temporal-holdout benchmarking cohort. All curated databases (GO, MPO, HPO,
and the PPI) were retrieved before March 2019, we thus sought to filter for patients
with causal genes that were discovered only after that point in time (Supplementary
Fig. 8a). To this end, we collected the list of confirmed intellectual disability (ID)
causal genes from Genomics England PanelApp93, a large expert reviewed platform
for disease gene causality evaluation (https://panelapp.genomicsengland.co.uk/
panels/285). We downloaded the ID panel v3.0, which has the signed off date of 10/
12/2019 and consists of 1,085 confirmed ID genes. Within our cohort of 131
RDconnect patients, 21 had causal genes not included in this panel gene list. These
genes can thus be considered to have been unknown to the expert community at
the time of network curation. By restricting our validation analysis to these 21
causal genes, we can assume that their disease association is not implicitly con-
tained in the data that we use in the prediction.

Gene-level ranking benchmark. As a benchmark for the network-based informed
multiplex propagation for patient candidate gene prioritization, we also imple-
mented several ranking methods relying solely on gene-based features. Specifically,
we employed the same gene features that were used to construct the multiplex
networks: (1) pathway information—ranking genes involved in more pathways
higher; (2) expression level information—ranking genes with higher expression
levels in brain tissues higher; (3) general literature counts—ranking genes linked to
a higher number of publications higher; (4) phenotypic similarity—ranking genes
higher that are associated with Human Phenotype Ontology (HPO) terms
described in a patient.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data generated in this study are provided in the Supplementary Information/Source Data
file. The RDconnect Genome-Phenome Analysis Platform (GPAP) data are available
under restricted access, which can be obtained by validated users via the platform at
https://platform.rd-connect.eu/.

Code availability
Source code and cache data is available at the https://github.com/menchelab/
MultiOme94. The supplementary Explorer app for detailed inspection of disease-network
specificity is available at www.menchelab.com/MultiOmeExplorer.
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