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Introduction to Network Analy sis
Jörg Menche and Albert- László Barabási

Introduction

Th e mechanisms under lying  human disease involve complex interactions 
across many levels of cellular organ ization, from protein– DNA interactions to 
signal transduction and metabolism. Despite the very diff  er ent nature of the 
components and the diversity of the interactions between them, they have one 
impor tant  thing in common: they can all be described as networks. In the past 
de cade, the emerging fi eld of network science has established new paradigms 
and tools to analyze and understand systems of interacting components and 
their collective properties. In this chapter, we review the basic concepts and 
tools of network science and illustrate their application to the study of  human 
disease.

Basic Network Properties

Networks are defi ned as a collection of components and their interactions. Th e 
components are called nodes or vertices and their interactions links or edges. 
Figure 2–1 shows examples of networks encountered in the study of  human 
disease. Protein interaction networks (Rual, Venkatesan, et  al. 2005; Stelzl, 
Worm, et al. 2005; Venkatesan, Rual, et al. 2009) are best described as undi-
rected networks: two proteins are connected by an undirected link if they physi-
cally interact with each other. Most commonly,  these links are unweighted, rep-
resenting a yes / no relationship. In weighted networks the nodes and / or links 
carry an additional weight, representing, for example, the activity of an en-
zyme (node weight) or the fl ux of a reaction (link weight) in metabolic net-
works (Ideker, Th orsson, et al. 2001; Stelling, Klamt, et al. 2002; Forster, Famili, 
et al. 2003). Gene regulatory networks (Davidson and Levin 2005) are directed 
networks, as each interaction has a source and a target, for example, “the ex-
pression of gene A inhibits the expression of gene B.” Th e regulatory mecha-
nism is mediated by other molecules such as transcription  factors or mi-
croRNAs. Networks that explic itly include two diff  er ent types of nodes are 
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called bipartite networks. Examples of such bipartite networks are networks 
in which diseases are connected to their associated genes (Goh, Cusick, et al. 
2007) or symptoms (Zhou, Menche, et al. 2015).

Figure 2–2 illustrates the basic concepts and quantities frequently encoun-
tered in the characterization of unweighted, undirected networks (Barabási, 
2016). Th roughout this chapter, we illustrate the introduced concepts using the 
interactome (Menche, Sharma, et al. 2014) described in Figure 2–3.

 TABLE 2–1 Mathematical Symbols

Ci Local clustering coeffi cient of node i

<C > Mean clustering averaged over all nodes

d Distance between two nodes (i.e., the length of the shortest path between them)

dmax Dia meter of a network (i.e., the largest d between all pos si ble node pairs)

ds Shortest distance observed between a node and a given group of nodes

<d > Mean distance averaged over all node pairs in the network

<dAA> Average of ds for a group of nodes A

<dAB > Average of ds between two groups of nodes A and B

γ Exponent of the degree distribution in scale- free networks

k Degree of a node (i.e., the number of links attached to it)

ks Number of links that a node has to a given set of seed genes

<k> Average degree of all nodes in a network

<k 2> Second moment of the degree distribution P (k )

l Length of a path in a network

L Number of links in a network

Lmax Maximal pos si ble number of  simple, undirected links in a network

m Number of nodes in a subgraph

N Number of nodes in a network

Nd Number of genes associated with a certain disease

p Probability that two nodes are connected in an Erdős– Rényi graph

pc Critical probability at which a  giant component emerges

pc 
bino Critical probability at which a  giant component emerges in an Erdős– Rényi graph

P (k ) Distribution of the degrees of all nodes

r Reset probability in a random walk on a network

<Srand
degree> Mean random expectation for the largest connected component size according to the 

degree- preserving randomizing method

σ Standard deviation

s Number of seed genes in the network

S Size of the largest connected  component

sAB Network- based separation of two groups of nodes A and B
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Network size. Th e total number of nodes N is called the size of the net-
work; L denotes the total number of links. In networks without 
multiple links between two nodes, the maximal pos si ble number 
of links between N nodes is

 
Lmax =

N
2

⎛

⎝⎜
⎞

⎠⎟
= N (N −1)

2
,
       

(2–1)

in which case the network is fully connected. Most real networks are sparse, that is, 
only a small fraction of all pos si ble links is pres ent. Th e interactome, for example, 
has N = 13,460  nodes and 
L = 141,296 links, which is less 
than 0.2% of all pos si ble links.

Degree. Th e number of 
links a node has (i.e., 
the number of its direct 
neighbors) is called its 
degree k. Th e mean or 
average degree <k > in a 
network is given by

k = 2L
N

.
             

(2–2)

Th e mean degree of the  human 
interactome is <k > ≈ 21.

Network paths. A network 
path refers to a se-
quence of links that 
 connect two nodes A 
and B; its length l is 
simply given by the 
number of steps. Th e 
minimal number of 
links necessary to con-
nect A  and B is called 
the shortest path length 
and gives their network- 
based distance d. Note 
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FIGURE 2–1.  Networks relevant in  human diseases are shown. Network- 
based approaches to  human disease involve dif fer ent levels of organ-
ization. At  every level we fi nd systems that are best described in terms of 
networks, from gene regulatory networks at the molecular scale, to co-
morbidity networks at the population scale. Depending on the complexity 
of the system and the desired level of detail in its repre sen ta tion, we can 
distinguish dif fer ent network types. The most elementary network types 
are undirected and unweighted networks. More complex types may in-
clude a link directionality or link weights or use dif fer ent types of nodes, 
describing the system as bipartite networks.
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that  there is typically a large 
number of shortest paths con-
necting most pairs of nodes 
within a network. Figure 2–3C 
shows the distribution P(d) of 
all pairwise distances in the 
interactome.
Network dia meter. Th e dia meter 
dmax of a network is the longest of 
all shortest paths between any 
two nodes. Most real networks 
have a surprisingly small dia-
meter, a property called the 
“small world” phenomenon, 
referring to the popu lar notion 
that every one is connected to 
every one  else by only a small 
number of intermediate ac-
quaintances. Th e dia meter of the 
interactome, for example, is 
dmax = 13 and the mean distance 
of all protein pairs is < d > = 3.4, 
implying that on average any two 
proteins are connected via less 
than four intermediate links (see 
Figure 2–3B, C).
Degree distribution. Th e distribu-
tion P(k) of the degrees of all 
nodes in a network can be used 
to distinguish classes of net-

works. Historically, the fi rst networks to be studied  were regular, 
like a square lattice, encountered, for example, in crystals. Th e 
degree distribution of regular networks typically has a single 
peak, implying that all nodes have the same number of neigh-
bors (see Figure 2–2B).

Random networks. Many of the fundamental concepts used in modern 
network science are derived from random networks (Erdős 1959; 
Erdős and Rényi 1960). Consider a network of size N in which 
each of the pos si ble Lmax node pairs is connected by a link with a 
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FIGURE 2–2.  General network properties. A, Illustration of the 
fundamental concepts that characterize nodes and their relation-
ship within a network. B, Three impor tant classes of networks 
and their degree- distribution. In a regular network, all nodes have 
the same number of links. In a random network, each pair of 
nodes is connected with a given probability, hence their degree 
distribution, P (k ), follows the binomial distribution (3). In a scale- 
free network, P (k ) ~ k- γ; its main feature is the presence of highly 
connected nodes, or hubs.
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FIGURE 2–3.  Overview of the interactome. The interactome represents a comprehensive map of all 
biologically relevant molecular interactions, for example, binary, regulatory, or signaling interactions. 
It includes data from high- throughput experiments, such as yeast two- hybrid, as well as lit er a ture- 
curated interactions. A, Global map of the interactome, illustrating its heterogeneity. Node sizes are 
proportional to their degree, that is, the number of links each node has to other nodes. B, Basic char-
acteristics of the interactome. C, Distribution of the shortest paths within the interactome. The average 
shortest path is l = 3.6. D, The degree distribution of the interactome is approximately scale- free. E, A 
local neighborhood of the interactome, illustrating the dif fer ent types of connections and highlighting 
the proteins associated with two dif fer ent diseases.
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fi xed probability p. In a random network, the probability for a 
node to have exactly k links follows the binomial distribution:

 
P (k ) =

N − 1

k

⎛

⎝
⎜

⎞

⎠⎟
pk (1− p ) N −1−k.

 
(2–3)

An impor tant property of the degree distribution shown in Eq. (2–3) is that de-
grees much larger or much smaller than the average are absent, that is, most 
nodes in the network have a comparable number of links around < k >.

Scale- free networks. A key fi nding of network science is that for most 
real networks the degree distribution does not follow Eq. (2–3). 
Instead, as discovered in 1999 (Albert, Jeong, et al. 1999; Barabási 
and Albert 1999), many real- world networks are scale- free, exhib-
iting a power- law degree distribution:

 P (k ) ~ k −7.  (2–4)

A scale- free distribution decays more slowly for large k than does the bino-
mial distribution (2–3). While the vast majority of nodes have only a few con-
nections,  there are some nodes in the network with a very large number of 
links, called hubs. For example, while more than 2000 proteins in the interac-
tome have only a single link, 8 have more than 400 interactions, like GRB2 
(k = 872), YWHAZ (k = 502), and TP53 (k = 450) (see Figure 2–3D). Th e presence 
of hubs impacts many network properties. For example, they serve as shortcuts, 
connecting diff  er ent parts of a network, making them not just “small,” but “ul-
trasmall” (Cohen and Havlin 2003).

Centrality. A frequently used mea sure of node importance is its cen-
trality (Freeman 1977; Wasserman and Faust 1994). For example, 
betweenness centrality mea sures the number of shortest paths 
that run through a node. Diff  er ent centrality mea sures of a node 
generally correlate with each other, and hubs tend to have high 
centrality, as they are likely to lie on many shortest paths. Be-
tweenness may reveal unexpected structural features within a 
network: low- degree nodes with high betweenness can, for ex-
ample, hint at an under lying modular network structure (Girvan 
and Newman 2002).

Clustering coeffi cient. Clustering describes the tendency for two 
neighbors of a node to also be connected to each other. In a net-
work, such a relationship is represented by a triangle (see 
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Figure 2–2A). Th e local clustering coeffi  cient of node i (Ci) mea-
sures for node i of degree ki the number of pos si ble triangles 
pres ent in its neighborhood:

 
Ci =

2Li

ki (ki −1)
,
 

(2–5)

where Li denotes the number of all connections between the neighbors of 
node i. Ci varies between 0 ≤ Ci ≤ 1, where Ci = 0 indicates that  there are no con-
nections between the neighbors of node i, and Ci = 1 represents a fully connected 
subgraph around it. Th e local clustering coeffi  cient, therefore, mea sures the local 
density of a network. Th e degree of clustering of a network is mea sured by aver-
aging over all local clustering coeffi  cients < Ci >:

 
C = 1

N
Ci

i=1

N

∑ .
 

(2–6)

In a random network, each link is pres ent with the same probability p, regard-
less of  whether or not the two nodes share a neighbor. Hence, the average clus-
tering coeffi  cient is d = p. Th is typically yields values  orders of magnitudes below 
the ones observed in real networks. Th e interactome depicted in Figure 2–3, for 
example, exhibits strong clustering with < C > = 0.17, whereas the expected value 
for a random network of the same density is only < C > = 0.0016.

Analyzing the Properties of Node Groups

Th e quantities introduced above capture the global characteristics of networks 
based on the properties of single nodes or node pairs. Yet, many biological func-
tions and their perturbations in disease states arise from the coordinated action 
of groups of molecules. Next, we introduce network mea sures to explore the 
properties of such node groups.

Motifs. Small recurrent subgraphs in a network are called motifs 
(Figure 2–4). Th ey are defi ned as a subgraph that occurs more 
oft en in a network than expected by chance  under an appropri-
ately chosen null model (Milo, Shen- Orr, et al. 2002). Motifs have 
attracted considerable attention in gene regulatory networks, 
where they can be interpreted as molecular building blocks asso-
ciated with certain functions. For example, a particularly  simple 
motif found in the Escherichia coli regulatory network is a single 
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node with an inhibitory self- loop, representing a transcription 
 factor repressing its own expression. Th is motif has been shown 
to be benefi cial for the dynamics of gene expression, leading to 
faster response to signals and enhanced stability against noise. 
Other motifs observed in regulatory networks include feed- 
forward loops, feedback loops, and oscillators.

The detection of motifs typically relies on network randomization (see 
section entitled “Randomizing the Network Topology” below”) and is computa-
tionally challenging, limiting the size of motifs that can be systematically studied 
to, at most, 10 nodes. At the same time, the functional interpretation of larger 
motifs is diffi  cult since their interface with the rest of the network increases, 
thereby impeding their analy sis in isolation from the rest of the network.

Communities. Larger topological structures within networks are 
commonly explored in terms of communities (or modules) 
(Girvan and Newman 2002; Ravasz, Somera, et al. 2002; Fortu-
nato 2010). A community is loosely defi ned as a subgraph with 
high local link density, so that nodes within the community 
have a higher number of links to each other than to nodes out-
side the community. A large number of defi nitions of communi-
ties appear in the lit er a ture, as well as algorithms to detect them 
(see Fortunato [2010] for a comprehensive review). Depending 
on the concrete application, one may, for example, choose be-
tween algorithms that allow for overlapping communities or 
distinct communities, determined by  whether a node can be-
long to several communities at the same time (Palla, Derenyi, 
et al. 2005; Ahn, Bagrow, et al. 2010). Some algorithms can also 
reveal hierarchical community structures (Girvan and Newman 
2002; Ahn, Bagrow, et al. 2010).

In biological networks, topological communities are oft en associated with 
certain biological pro cesses. Using an algorithm from (Ahn, Bagrow, et al. 2010), 
more than 1112 communities with fi ve or more nodes can be identifi ed in the 
interactome, with more than half of them being signifi cantly enriched with at 
least one biological pro cess according to the gene ontology (GO) (Ashburner, 
Ball, et al. 2000) (see Figure 2–4B, C). Figure 2–4D shows an example of a com-
munity of 22 proteins that are connected via 120 links. Th e community contains 
all 5 proteins associated with ethanol metabolism, corresponding to highly sig-
nifi cant enrichment (p < 2 × 10−6).
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FIGURE 2–4.  Properties of node groups. A, Illustration of collective node characteristics: (1) Motifs are 
small subgraphs that occur more often than expected by chance. (2) Topological communities are local 
areas of high link density. (3) Connectivity patterns with a given set of nodes, for example, proteins as-
sociated with the same disease. They can  either be isolated, that is, not interacting with any other nodes 
of the set, or form connected components of dif fer ent sizes. B– D, Topological communities on the inter-
actome. The community- fi nding algorithm of (Ahn, Bagrow, et al. 2010) identifi ed 92,510 communities, 
of which 1,112 consist of fi ve or more nodes. C, 574 (51%) of  these communities are signifi cantly 
 enriched with at least one gene ontology (GO) terms (biological pro cesses); the maximum number is 56 
per community. D, Illustration of the community of the 22 densely interconnected genes associated with 
ethanol metabolism (GO:0006067).
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Localization of biological function in networks. While in some cases  there 
is a correspondence between topological communities and func-
tional modules in biological networks,  there are also impor tant 
counterexamples: disease modules formed by proteins associated 
with a par tic u lar disease are generally not very densely intercon-
nected within the interactome. Th is is due in part to the incom-
pleteness of the current interactome and our incomplete list of 
disease genes (see also, section entitled “Network- Based Disease 
Gene Discovery” below”). It is also pos si ble, however, that disease 
modules and functional modules have diff  er ent topological prop-
erties. Regardless of their link density, however,  there is evidence 
that disease modules are highly localized in specifi c network neigh-
borhoods. Two quantities allow us to mea sure the degree of net-
work localization of a given set of nodes (Menche, Sharma, 2015):

1. Size of the largest connected component S, that is, the number of nodes that 
form a connected subgraph (see Figure 2–4). Many properties of this quantity 
can be understood analytically, indicating that its value is relatively sensitive to 
data incompleteness (see also section entitled “Network- Based Disease Gene 
Discovery” below”). In extreme cases, a single missing link in the interactome 
or a single protein whose disease association is not known may destroy the con-
nected component and leave many proteins isolated.

2. Mean shortest distance. As a complementary quantity that is less sensitive 
to network incompleteness, consider the distribution of shortest distances ds: 
For each disease- associated node we determine the distances d to all other 
disease- associated nodes. Taking into account only the shortest distance ds 
among them results in a distribution P(ds). Th e mean value < d > can be inter-
preted as the dia meter of the disease module. Note that in contrast to the dia-
meter of the network as introduced above,  here dia meter refers to an average 
distance, instead of a maximal distance.

In order to interpret the values of Si and ds, a comparison with an appropriate 
random expectation is necessary (see Statistical Tools for Network Analy sis). In 
a comprehensive study of 299 complex diseases, it was shown that proteins as-
sociated with 226 diseases exhibit signifi cant localization in the interactome 
according to both mea sures (Menche, Sharma, et al. 2015). Furthermore, the 
more signifi cant the localization of a disease module, the more similar are the 
molecular functions of the proteins involved in it.

Separation between diseases. Th e concept of network localization can 
be further generalized to examine the relation between diff  er ent 

514-64750_ch01_1P.indd   26514-64750_ch01_1P.indd   26 07/02/16   1:22 am07/02/16   1:22 am



 Introduction to Network Analysis 27

—-1
—0
—+1

sets of nodes, like proteins associated with two diff  er ent diseases. 
Th e network serves as a map, in which diseases are represented 
by diff  er ent neighborhoods. Th e proximity and degree of overlap 
of two network neighborhoods has been found to be highly pre-
dictive of the pathobiological similarity of the corresponding dis-
eases (Menche, Sharma, et al. 2015).

To quantify the distance of two sets of nodes A and B, we fi rst compute the 
P(dAB) distribution of all shortest distances dAB between nodes A and B and the 
respective mean distance < dAB > (Figure 2–5). Th e network- based separation sAB 
can be obtained by comparing the mean shortest distances < dAA > and < dBB > 
within the respective node sets A and B, to the mean shortest distance < dAB > 
between them (Figure 2–5):

 
sAB = d AB −

d AA + dBB

2  
(2–7)

A negative sAB indicates topological overlap of the two node sets, whereas a pos-
itive sAB indicates topological separation of the two node sets. Rheumatoid ar-
thritis and multiple sclerosis, for example, are two closely related diseases with 
overlapping disease modules (sAB = −0.2), whereas proteins associated with per-
oxisomal disorders are well separated from the multiple sclerosis proteins 
(sAB = 1.3) (see Figure 2–5B). Th e network- based separation of disease- associated 
proteins has been studied for 44,551 pairs among 299 diseases, showing that 
only 7% of all pairs show network overlap. Th e degree of this overlap, however, 
is highly predictive for the pathobiological similarity of diseases: disease pairs 
with overlapping modules are associated with functionally similar genes that 
show elevated co- expression, are diseases that have similar symptoms, and are 
diseases with a high comorbidity. At the same time, nonoverlapping diseases 
lack any detectable clinical or molecular relationships.

Perturbations and Network Incompleteness

Th e structural characteristics of a network have impor tant implications for the 
properties of the dynamic pro cesses they support, like the speed and reliability 
of signals propagating through them. In general, two nodes in the network can 
communicate only if  there is a path connecting them. An impor tant property 
of networks is, therefore, their robustness, or resilience, against the breakdown 
of nodes or links that may break such paths.
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the mean shortest distances within the sets, <dAA> and <dBB>, as well as the distances for all node 
pairs between them, <dAB>. Negative values of sAB indicate a topological overlap of the two node 
sets, whereas positive sAB means that they are topologically separated. In general, sAB is bound by 
−dmax ≤ sAB ≤ dmax, where dmax denotes the dia meter of the network. Since nodes that are shared 
between sets A and B have dAB = 0, the minimal value increases to −dmax + 1 for sets without common 
nodes. For sets with at least two nodes, the maximal value is dmax − 1. B, A subnetwork of the in-
teractome highlighting the network- based relationship between the disease proteins associated 
with multiple sclerosis, rheumatoid arthritis, and peroxisomal disorders.

514-64750_ch01_1P.indd   28514-64750_ch01_1P.indd   28 07/02/16   1:22 am07/02/16   1:22 am



 Introduction to Network Analysis 29

—-1
—0
—+1

Network resilience. Biological systems are constantly exposed to ex-
ternal and internal perturbations. Mutations, for example, may 
aff ect the ability of a protein to interact with other proteins. A 
complete loss of function of the protein removes the respective 
node from the protein- interaction network, whereas link removal 
corresponds to the case in which only some of its interactions are 
lost (Zhong, Simonis, et al. 2009).

Networks in which only a fraction of nodes and / or links are pres ent have 
been studied extensively in the framework of percolation theory (Callaway, 
Newman, et al. 2000; Cohen, Erez, et al. 2000; Newman, Strogatz, et al. 2001; 
Dorogovstev 2003). Generally, as long as a certain critical fraction of all N nodes 
(or L links) is pres ent, the network remains globally connected (Figure 2–6). 
More precisely, it has a  giant component, a connected subgraph that contains 
most nodes. Below this critical fraction, the  giant component dis appears and the 
network breaks into small disconnected components. For random failure, when 
all nodes (links) have the same probability p of being pres ent in the network, 
the critical probability pc, at which the  giant component vanishes (called the 
percolation threshold), is as follows (Callaway, Newman, et  al. 2000; Cohen, 
Erez, et al. 2000; Newman, Strogatz, et al. 2001; Dorogovstev 2003):

 
pc =

k
k 2 − k

,
 

(2–8)

where < k > and < k2 > denote the fi rst and second moment of the degree distribu-
tion P(k). Using the corresponding expressions for the binomial distribution in 
Eq. (2–3) we fi nd that the percolation threshold for random graphs is

 
pc

bino = 1
p (N − 2)

.
 

(2–9)

It follows from Eq. (2–9) that connected random networks always have a fi nite 
threshold pc

bino, that is, if a critical fraction of nodes / links are removed, the net-
work disintegrates.

Enhanced robustness. Surprisingly, this is not always the case for scale- 
free networks  because a scale- free distribution has a diverging 
second moment < k2 > → ∞ for γ < 3, leading to pc → 0 in Eq. (2–8). 
Th is means that in the limit of very large networks, one needs to 
remove all nodes / links in order to break the network. Strictly 
speaking, real networks with a fi nite number of nodes always 
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FIGURE 2–6.  Percolation theory. A, The be hav ior of the relative size of the  giant connected component as 
a function of network completeness. Generally, the completeness is given by the product of the observed 
fractions of all nodes p and all links q. At pq = 1, all nodes and links are pres ent and the network consists 
of one single connected component. As more and more nodes/links are missing, the size of the  giant com-
ponent shrinks  until it vanishes at the critical completeness pc. B, Size of the  giant component of the inter-
actome for three dif fer ent percolation or failure mechanisms: random failure of nodes/edges and targeted 
removal of the proteins with the highest degrees. C, We observe a similar be hav ior when subgraphs of size 
m are considered instead of the  whole network. Generally, the percolation threshold pc (m )  will be larger 
for smaller subgraphs, that is, smaller subgraphs require a higher completeness in order to be observable. 
D, The phase diagram shows for  every level of network completeness how large a module needs to be in 
the full network in order to exhibit a  giant component in the incomplete one, that is, to be observable. 
(Y2H = yeast two- hybrid.)
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have a fi nite threshold (pc > 0), but its value is negligibly small. For 
example, for the protein- interaction network discussed above, the 
threshold is pc = 0.01, so up to 99% of the nodes can be removed 
before completely fragmenting the network (see Figure  2–6B). 
Since the vast majority of nodes in scale- free networks have only 
a few connections, random failure mostly aff ects such low- degree 
nodes, which, in turn, have  little impact on the overall integrity 
of the network. Such networks are, therefore, remarkably tolerant 
against random node removal.

Fragility to attack. Th is robustness against random failure has also a 
down side: the networks are particularly vulnerable to a targeted 
attack that systematically removes the hubs, that is, the nodes in 
the network with the highest degrees (Albert, Jeong, et  al. 
2000). Th e precise fraction of removed hubs  under which the 
network breaks down depends on the details of the degree dis-
tribution. For the interactome, we fi nd that removing ~30% of 
the nodes is suffi  cient to destroy the network completely (see 
Figure 2–6B).

Network incompleteness. Percolation theory can also help us understand 
the implications of the inherent incompleteness of current maps 
of biological networks. For example, currently available high- 
throughput  human- protein- interaction maps are estimated to 
cover only around 20% of all true interactions (Venkatesan, Rual, 
et al. 2009). Using the percolation framework, we can view the 
current maps as an incomplete sample from the under lying 
complete network, in which both links and nodes are missing 
(Stumpf, Wiuf, et al. 2005, 2010; Guimera and Sales- Pardo 2009; 
Venkatesan, Rual, et al. 2009; Annibale and Coolen 2011). High- 
throughput interaction maps, as obtained, for example, by yeast 
two- hybrid (Y2H) assays (Rolland, Tasan, et al. 2014), can be viewed 
as a uniform subset of the corresponding full interactome: For an 
unbiased set of proteins, all pairwise interactions have been 
tested, so the pres ent fraction of all real interactions corresponds 
to the sensitivity of the experimental protocol. Assuming uni-
form random sampling, the overall completeness of the obtained 
network map is given by

Pq = (fraction of screened proteins) p  
 × (sensitivity to detect a link) q. (2–10)
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In the same way that a  whole network can fall apart  under random node re-
moval or attack, subgraphs inside a network can become disconnected if net-
work incompleteness exceeds some threshold. Disease modules, for example, are 
expected to form a connected subgraph within the complete interactome. Yet, 
within the current datasets, only ~20% of the proteins associated with a given 
disease are part of the  giant component. Figure 2–6C illustrates schematically 
the percolation curves for subgraphs of diff  er ent sizes of m. Th e percolation 
threshold is inversely proportional to m; that is, smaller subgraphs require a 
higher network completeness in order to have a  giant component. Figure 2–6D 
shows the minimal subgraph size for which we expect to fi nd a remaining con-
nected component for a given level of network completeness using the Y2H net-
work as input. Th e yellow arrow indicates the estimated values for the current 
dataset. We fi nd that the coverage of the current Y2H dataset is still too small to 
observe signifi cant clustering for the given number of disease- associated genes. 
Including interactions collected in the lit er a ture, however, puts us above the 
threshold, allowing the systematic identifi cation of multiple disease modules 
(Menche, Sharma, et al. 2015). We expect that once the ongoing Y2H eff orts 
screen an even larger number of proteins, disease modules can be identifi ed in 
high- throughput data, as  well.

Network- Based Disease Gene Discovery

In addition to missing interactions, we oft en lack information on impor tant 
node properties. In par tic u lar, for most complex diseases only a fraction of all 
disease- associated genes are known. As discussed above, disease genes oft en in-
teract with each other within the same network neighborhood. Building on this 
observation, and the localization of the disease genes in the same network 
neighborhood, in recent years a plethora of methods have been developed 
that exploit the topology of the interactome to infer new disease genes from 
their connectivity patterns within protein- interaction networks (Tranchevent, 
Capdev ila, et al. 2011). Machine- learning approaches, such as neural networks, 
support vector machines, or Bayesian networks, typically combine protein- 
interaction data with other sources of information, such as protein sequence 
and structure, pathway membership, gene expression, or the genome- wide as-
sociation study (GWAS) p values (Morrison, Breitling, et al. 2005; Aerts, Lam-
brechts, et al. 2006; Franke, van Bakel, et al. 2006; Hutz, Kraja, et al. 2008). A 
number of methods aim to identify pos si ble new disease gene candidates relying 
solely on the position of known diseases genes in the interactome (Kraut-
hammer, Kaufmann, et al. 2004; George, Liu, et al. 2006; Kohler, Bauer, et al. 
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2008; Dezso, Nikolsky, et al. 2009; Vanunu, Magger, et al. 2010; Bailly- Bechet, 
Borgs et al. 2011; Erten, Bebek et al. 2011; Guney and Oliva 2012; Sharma, 2015). 
The already known disease genes that serve as input for  these methods are 
commonly referred to as seed genes. In the following, we briefl y review the 
basic network concepts that underlie  these node / gene prioritization  methods.

Shortest- path approaches. Based on the observation that seed genes tend 
to interact with each other, several methods consider the interme-
diate genes along the shortest paths connecting the seed genes 
as potential disease gene candidates (George, Liu, et  al. 2006; 
Managbanag, Witten, et al. 2008; Dezso, Nikolsky, et al. 2009). 
Typically, this results in a large number of candidate genes. In 
order to identify the most promising candidates, the intermediate 
genes can be ranked, for example, by the number of shortest paths 
in which they participate (George, Liu, et al. 2006) and their sig-
nifi cance (Dezso, Nikolsky, et al. 2009). An approach introduced 
by Bailly- Bechet, Borgs, et al. (2011) does not consider all shortest 
paths, but instead identifi es a minimal set of intermediate genes 
that are suffi  cient to connect all seed genes into a single subgraph, 
a so- called Steiner tree.

Dynamic approaches. A diff  er ent approach for identifying likely dis-
ease gene candidates is to propagate known disease associations 
using dynamic models (Krauthammer, Kaufmann, et al. 2004; 
Kohler, Bauer, et al. 2008; Vanunu, Magger, et al. 2010; Guney and 
Oliva 2012). In Köhler, Bauer, et al. (2008), for example, the seed 
genes serve as sources for a diff usion pro cess that can also be for-
mulated in terms of a random walker that wanders from node to 
node along the links of the network: at  every time step of the 
iterative algorithm, the walker moves to a randomly selected 
neighbor of its current position. In order to emphasize the local 
neighborhood around the seed genes, the walker is reset to a ran-
domly chosen seed gene with a given probability r  aft er  every 
move. Th e frequency with which the nodes in the network are vis-
ited converges  aft er many iterations and can be used to rank the 
corresponding genes. Genes that are visited more oft en are con-
sidered to be “closer” to the seed genes and, therefore, more likely 
to be relevant to the disease than  those visited less  oft en.

Connectivity- based approaches. Several approaches rank candidate genes 
based on their number of links to seed genes ks (Erten, Bebek, 
et al. 2011; Guney and Oliva 2012; Sharma, 2015). Note that ks 
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alone is not informative, since hubs (i.e., proteins with many 
links) are also expected to interact with a large number of seed 
genes without necessarily implying a disease association. To ac-
count for  these eff ects, Menche, Sharma, and colleagues (2015) 
proposed an algorithm that is based on the signifi cance of ks. In a 
network of size N, with s randomly distributed seed genes, the 
probability that a gene with degree k connects to exactly ks seed 
genes is given by the hypergeometric distribution

 

p (X = kS ) =

s
kn

⎛

⎝
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⎞

⎠
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N − s
k −kn

⎛

⎝
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(2–11)

Th e signifi cance of a given number of connections is, therefore, given by:

 
p-value = p (X = n ),

n=ks

k

∑
 

(2–12)

which can then be used to iteratively rank all genes in the network (Figure 2–7).
Note that the approaches introduced above can be used for any functional 

annotation by using suitable protein/gene properties to defi ne seed genes, like 
pathway membership or diff erential expression.

Statistical Tools for Network Analy sis

In order to assess the statistical signifi cance of a par tic u lar network- based 
fi nding (e.g., the localization of disease proteins), we need appropriate null 
models. As many network properties, like the degrees, follow non- Gaussian dis-
tributions, we cannot apply standard statistical tests that rely on normality. 
Network randomization provides a direct way to compare a given mea sure ment 
with random expectation. Generally, we can randomize the network topology, 
such as the interaction partners of a par tic u lar protein, or randomize the an-
notation of nodes, like the disease association of proteins. Th e strategy we apply 
depends on the statistical feature of the original network we wish to preserve.

Randomizing the Network Topology

Comparison with the random network model. The most basic reference 
frame is the random network discussed in Basic Network 
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FIGURE 2–7.  Network approaches for disease- gene prioritization. Illustration of the connectivity- based 
DIAMOnD method (Sharma 2015) to construct a full disease module from a set of known disease- 
associated proteins. A, The seed proteins are placed on the interactome. For  every neighboring protein 
a connectivity p value is computed according to Erdős and Rényi (1960). B, At each iteration, the protein 
with the lowest p value is added to the seed cluster. The procedure can be continued  until the entire 
network is selected and added to the module. The order in which the proteins are being pulled in to the 
module refl ects their topological relevance to the disease, resulting in a ranking of all proteins.
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Properties. For this approach, we randomize a given network, 
keeping only the number of nodes N and the number of links L 
constant. Since many properties of a random network can be cal-
culated analytically, we do not need to perform extensive simula-
tions to achieve this goal. Th e mean clustering coeffi  cient, for ex-
ample, is simply given by < C > = p. For the completely randomized 
interactome, this yields < C > = p = L ⁄Lmax = 0.0016, in excellent 
agreement with the value obtained from simulations (Figure 2–8C).

Full randomization does not preserve the degree distribution; hence, hubs 
 will no longer be pres ent in the randomized network. As many network prop-
erties depend strongly on the degree distribution and the presence of hubs, this 
method is not suited for most applications.

Degree- preserving randomization. To maintain the degree distribution 
of a network, we randomize the interaction partners of the nodes 
while preserving each node’s degree. To implement this method, 
we can use a switching algorithm (Maslov and Sneppen 2002) (see 
Figure 2–8A). At each step of the algorithm, two links are selected 
at random and their endpoints are swapped. For example, the 
links connecting nodes n1 ↔ n2 and n3 ↔ n4 are exchanged, re-
sulting in two new interactions n1 ↔ n3 and n2 ↔ n4, respectively. 
Th is rewiring can lead to multiple links between a pair of nodes 
and self- loops. In networks in which such links are not allowed, 
the original link pairs are restored. Repeating this pro cess a 
suffi  cient number of times leads to a network whose topology is 
randomized, while the degree distribution remains unchanged. 
In other words, hubs remain hubs. While  there is no precise 
criterion for the necessary number of switches, empirical results 
suggest that a good randomization is achieved  aft er 100L switching 
attempts (Milo, Nashtan, et al. 2004).

A more effi  cient approach is the matching algorithm (see Figure 2–8A), based 
on the confi guration model (Bender and Canfi eld 1978; Bollobas 1979) used to 
generate networks with a given degree sequence. Th e algorithm follows  these 
steps: All links are broken at once and then, iteratively, two “half edges” or 
“stubs” are chosen at random and connected  until all links are restored. As be-
fore, this pro cess may produce self- loops and multiple links, in which case the 
respective stubs are not connected and an alternative pair is selected at random. 
While this method may introduce bias in the ensemble of the generated net-
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FIGURE 2–8.  Network randomization. A, Two algorithms frequently used to randomize the topology of a 
network while preserving the degrees of the individual nodes. B, Randomizing node attributes, for ex-
ample, proteins associated with a par tic u lar disease with and without preserving the original degrees of 
the nodes. C, Comparison of the clustering coeffi cient of the interactome with values obtained by 
complete randomization and degree- preserving randomization. D, The size of the largest connected 
component (lcc) of proteins associated with multiple sclerosis in the interactome and compared with the 
values from randomization according to B.
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works, this eff ect can usually be neglected for large N (Milo, Nashtan, et  al. 
2004). Figure 2–8C shows the distribution of the mean clustering coeffi  cient 
obtained from 10,000 randomized versions of the interactome. Th e mean value 
< C > = 0.03 is considerably larger than for the fully randomized network, ac-
counting for the infl uence of the degree distribution, yet it is still smaller than 
the real value < C > = 0.17 for the interactome, indicating that the observed high 
clustering coeffi  cient could not have emerged by chance.

Randomization can also be designed to preserve other topological features 
of a network. For example, some algorithms generate randomized networks that 
preserve the clustering coeffi  cient of the original network (Serrano, Boguna, 
et  al. 2005) or the correlations between the degrees of neighboring nodes 
(Boguna and Pastor- Satorras 2003; Weber and Porto 2007). In metabolic net-
works,  simple link rewiring would generate biochemically unrealistic reactions. 
Th erefore, we need to use more involved procedures that generate only biochemi-
cally valid reactions (Basler, Ebenhoh, et al. 2011; Samal and Martin 2011).

Randomizing Node Properties

Randomization of the network topology is primarily used to identify the impact 
of the network topology on the system’s be hav ior. To explore the network loca-
tion of a specifi c group of nodes, we oft en need to keep the network fi xed and 
randomize the identity or the location of the nodes. We use this method, for 
example, when we test  whether proteins associated with a par tic u lar disease 
have more connections among themselves than expected by chance.

Random label permutation. Th e simplest approach is to distribute the 
node attributes of interest randomly on the network (see 
Figure 2–8B). For instance, to investigate the connectivity pat-
terns of Nd disease proteins, the same number of proteins are se-
lected randomly from the network, and the quantity of interest is 
mea sured for this set of randomized nodes. Repeating this pro-
cedure  will yield a distribution that can be used as a random 
control against which the statistical signifi cance of the original 
quantity can be tested. For example, multiple sclerosis has Nd = 69 
known associated proteins in the interactome, forming a largest 
connected component of size S = 11. Figure 2–8D shows the size 
distribution of the largest connected component for 69 randomly 
chosen proteins obtained from 10,000 simulations. Th e mean 
random expectation is  Srand

full  = 2.9 with a standard deviation σ = 1.4. 

514-64750_ch01_1P.indd   38514-64750_ch01_1P.indd   38 07/02/16   1:22 am07/02/16   1:22 am



 Introduction to Network Analysis 39

—-1
—0
—+1

Th e statistical signifi cance of the observed size can be quantifi ed 
using its z- score:

 
z-score =

S − Srand
full

σ
,
 (2–13)

yielding z = 5.8. Th e empirical p value (i.e., the fraction of all random simula-
tions with Srand

full  S, is p = 0.003. As z- scores above 1.65, corresponding to a p 
value  under 0.05 for normal distributions, are considered highly signifi-
cant, we conclude that the connected component for multiple sclerosis could 
not have emerged by chance, indicating the potential presence of a disease 
 module.

Degree- preserving label permutation. Similar to the randomization of the 
network topology, we can introduce additional constraints when 
reshuffl  ing the node labels. One could argue, for example, that 
the high number of connections among disease proteins is a re-
sult of their relatively high degree. To test this hypothesis, we 
swap the node labels only between nodes of the same or compa-
rable degree (see Figure 2–8B). Yet, we may have very few or even 
only one node with a par tic u lar high degree. It is, therefore, oft en 
useful to relax the requirement of an exact match of the degrees 
for a label swap and, instead, divide the degrees into bins of dif-
fer ent degrees and swap the node characteristics within each 
bin. Figure 2–8D shows the distribution Srand

degree  obtained using 
such binned degree- preserving randomization. Th e mean value   
Srand

degree = 5.1  is increased compared to the full randomization. 
Yet, the  actual value is still signifi cantly higher (z = 3.1, empir-
ical p- value = 0.009), indicating that the high degree of the 
disease proteins alone cannot account for the observed large 
component size.

Perspectives and Further References

In this chapter we could discuss only the most frequently used quantities in net-
work science. For a deeper and broader discussion, we refer the reader to the 
online Network Science textbook (http:// barabasi . com / book / network - science) 
and other reviews (Albert and Barabási 2002; Newman 2003; Dorogovstev, 
Goltsev, et al. 2008; Newman 2010; Walhout, Vidal, et al. 2013, Buchanan et al. 
2010). Network science is a very active fi eld of research, with new tools emerging 

514-64750_ch01_1P.indd   39514-64750_ch01_1P.indd   39 07/02/16   1:22 am07/02/16   1:22 am



40 Network Medicine

-1—
0—

+1—

daily. In the following, we highlight a few recent developments that might also 
provide useful insight for the study of diseases.

Layered networks. As we have seen above, biological systems exhibit 
diff  er ent levels of organ ization, each of which is best described as 
a separate network (see Figure 2–1).  Th ese networks are, however, 
not in de pen dent of each other, but can be considered as networks 
of networks. Such layered or interdependent networks exhibit a 
number of in ter est ing phenomena, for example, concerning their 
stability  toward perturbations (Buldyrev, Parshani, et al. 2010; 
Gao, Buldyrev, et al. 2011). Th e interdependence between diff  er ent 
layers of the network can give rise to cascading failure, where the 
breakdown of a node in one layer propagates throughout all other 
layers, leading to a global breakdown.

Temporal networks. Th e networks we have considered  here are essen-
tially static in nature— that is, the nodes and their interactions do 
not change over time. Th ey capture the biochemical skeleton of 
all interactions that are chemically pos si ble. Th is is, of course, a 
simplifi ed view— for example, proteins are not transcribed at 
all times and molecular interactions may or may not occur de-
pending on internal or external signals. Th e rapidly evolving 
fi eld of temporal networks aims to incorporate  these dynamic as-
pects of networks and to explore the impact of this temporality 
on its structural and dynamic characteristics (Przytycka, Singh, 
et  al. 2010; Holme and Saramaki 2012). Schulz, Pandit, et  al. 
(2013), for example, used time- sequenced expression data of 
protein- coding genes and miRNAs to construct a dynamic net-
work to predict the most explanatory  factors for changes in ex-
pression over time.

Conclusion

An impor tant issue in the study of biological networks boils down to a single 
question: Can we control them? In the past few years  there have been a series of 
rigorous results to address network controllability (Liu, Slotine, et al. 2011, 2013). 
In systems of biochemical reactions, for example, it has been found that by mon-
itoring a few selected nodes one can infer the complete state of the entire system 
(Liu, Slotine, et al. 2013).  Th ese results could have immediate application in 
the rational design of biomarkers for disease states, as well as in rational drug 
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target(s) se lection. Th e ultimate goal is to control  these systems, that is, to drive 
a cell from a disease state to a healthy state (Liu, Slotine, et al. 2011).
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