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Drug combinations provide effective treatments for diverse diseases, but also represent a

major cause of adverse reactions. Currently there is no systematic understanding of how the

complex cellular perturbations induced by different drugs influence each other. Here, we

introduce a mathematical framework for classifying any interaction between perturbations

with high-dimensional effects into 12 interaction types. We apply our framework to a large-

scale imaging screen of cell morphology changes induced by diverse drugs and their com-

bination, resulting in a perturbome network of 242 drugs and 1832 interactions. Our analysis

of the chemical and biological features of the drugs reveals distinct molecular fingerprints for

each interaction type. We find a direct link between drug similarities on the cell morphology

level and the distance of their respective protein targets within the cellular interactome of

molecular interactions. The interactome distance is also predictive for different types of drug

interactions.
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B iological function relies on the careful orchestration of
numerous and diverse cellular components and their
interactions. Disease states, but also therapeutic interven-

tions, can be viewed as perturbations of this intricate system,
either driving it away from homeostasis, or aiming to restore it,
respectively. Understanding the combined effect of independent
perturbations lies at the core of many fundamental, as well as
practical challenges in current biology and medicine. Combina-
tion therapies, for example, provide promising new treatment
strategies for diseases ranging from cancer to bacterial or viral
infections1,2. At the same time, interactions between drugs and/or
comorbidities may also induce unexpected side effects. Adverse
reactions are a primary cause for the failure of clinical trials3 and
represent a major challenge in drug development and repurpos-
ing4–6. Especially for elderly patients, for whom a combination of
several disease conditions and simultaneous drug treatments is
not uncommon, adverse effects can be a severe threat7. Both for
avoiding such detrimental effects, and for rationally designing
beneficial combinations of therapeutic and/or disease associated
perturbations, we need to first understand how different pertur-
bations interact with each other.

Molecular networks provide a unifying platform to system-
atically investigate the combined effects of perturbations of
biological systems. In recent years, an increasingly detailed
network diagram of the complex machinery of interacting
molecules that constitutes the basis of (patho-) physiological
states has become available8,9. Network-based analyses revealed
an intimate relationship between structural properties of this
interactome network of protein–protein interactions (PPIs), its
functional organization, and consequences of its perturbation.
The most essential cellular components, as well as genes asso-
ciated with severe diseases, tend to be located at the center of
the interactome10,11. Genes that are associated with the same
disease aggregate in specific network neighborhoods, or “dis-
ease modules”9,12,13. The closeness of a drug’s target(s) to a
disease module is related to its efficacy, but also to side effects
that may occur14,15. This again highlights our lack of a sys-
tematic understanding of how independent perturbations
influence each other.

Here, we set out to identify key principles of how different
perturbations are integrated through the molecular network.
First, we want to understand the directionality of this process, i.e.
whether one perturbation increases or decreases the effect of
another, for example, a drug that may alleviate or worsen a cer-
tain condition. Secondly, we want to understand the conditions
under which emergent behavior occurs, i.e. when the combina-
tion of perturbations promotes entirely new outcomes, such as
unexpected side effects. Lastly, we aim to connect either phe-
nomena observed on a phenotypic level to underlying molecular-
level determinants.

We address these questions using a combined theoretical and
experimental approach: we develop a rigorous mathematical
framework for defining and quantifying all possible interactions
that may occur between perturbations that cause complex phe-
notypes. This framework is then applied to a large-scale imaging
screen of a well-controlled cell line model system. High-content
imaging is a powerful tool for profiling cellular perturbations in a
detailed and unbiased fashion16,17. In some cases, morphological
changes can be linked directly to specific molecular mechanisms,
for example, for drugs that affect the cytoskeleton. In many other
cases, however, the relation to cellular organization is less direct
and remains to be understood18–21. We quantify the morpholo-
gical changes induced by 267 individual drug compounds and all
35,611 pairwise combinations. We find that distinct cell
morphologies can be associated with chemical perturbations of
distinct neighborhoods within the molecular network and that

the overlap between these neighborhoods is predictive for inter-
actions between the respective perturbations.

Results
The interactome patterns of chemical perturbations. We started
by compiling a comprehensive interactome consisting of 309,355
physical interactions between 16,376 proteins (Fig. 1a, Supple-
mentary Fig. 1, Supplementary Data 1 and Methods section). To
perturb the interactome, we used a library of 267 chemical
compounds, of which 256 are approved for clinical use (Fig. 1b,
Supplementary Data 2 and 3 and Methods section). The library
was designed to represent a wide range of mechanisms of action
(MOAs), structural diversity, and targeted biological processes
(Fig. 1c–e, Supplementary Fig. 2, Supplementary Data 4 and
Supplementary Methods for a characterization of the CLOUD
library). The mean number of protein targets per compound is
13.64, but there are also several compounds with over 100 targets
(Supplementary Data 5). Taken together, 32% of all molecular
pathways contained in the KeGG database are annotated as
directly related to the MOA of a particular compound; 89%
contain at least one targeted protein. The targets are characterized
by a broad distribution of the number of interactors, or degree k,
similar to the one of the full interactome, albeit with a significant
tendency towards more highly connected proteins (〈kall〉= 37.7
versus 〈ktargets〉= 74.4; Supplementary Fig. 3). While this is likely
the consequence of being more extensively studied, in part it may
also reflect a higher propensity of more highly connected proteins
to yield a response upon perturbation, i.e., a therapeutic effect.

The connectivity patterns between the targets of a given
compound show striking similarities to patterns observed among
disease associated genes. First, they tend to aggregate in specific
interactome neighborhoods, or “perturbation modules”: 64% of
the compounds target proteins that form connected subgraphs
within the interactome that are significantly larger than expected
by chance; 92% of all compounds are characterized by
significantly shorter interactome distances ds between their
associated targets. We quantified the degree of interactome
localization using Glass′ Δ, which compares the observed
interactome distances between targets to those obtained from
randomly sampled genes (Fig. 1f, Supplementary Fig. 4 and
Methods section). Second, there is a strong correlation between
the degree of interactome localization and the biological similarity
of the respective proteins: the average functional similarity in
terms of Gene Ontology (GO) annotations is up to 32-fold higher
for strongly localized perturbation modules (Glass′ Δ ≤−3) than
for perturbation modules whose targets are randomly scattered
over the interactome (Glass′ Δ ≥ 0) (Fig. 1g–i, Supplementary
Fig. 5A–C). The same trend was observed when considering
known disease associations of the target proteins: highly localized
modules are associated with cohesive disease phenotypes, whereas
more widespread modules are related to more heterogeneous
groups of diseases (Fig. 1j). Third, the interactome-based overlap
between two perturbation modules is indicative of shared cellular
processes and disease associations (Fig. 1k–o, Supplementary
Fig. 5D). Finally, we recapitulate previous findings that drugs
targeting close by interactome neighborhoods tend to share
therapeutic usage and side effects15,22 (Fig. 1p, Supplementary
Fig. 5E, F).

The interactome characteristics of perturbation modules and
their relationships can be summarized in a three-dimensional
perturbation space (Fig. 1q). Each perturbation module is
represented by a sphere in this space, such that distances and
overlaps between spheres approximate the respective quantities
measured on the interactome. Compounds used to treat the same
disease class tend to be close within the perturbation space, as
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Fig. 1 The perturbation landscape of chemical compounds in the human interactome. a Interactome consisting of 16,376 proteins and 309,355 physical
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shown in Fig. 1q for anti-Parkinson drugs (ATC, Anatomical
Therapeutic Chemical Classification System, class N04) or
psychoanaleptics (N06). Interestingly, the perturbation space also
revealed a closeness between treatments and related side effects.
For example, anti-protozoal drugs, which have been associated
with psychoactive side effects, overlapped with analeptics that
stimulate the central nervous system23. Similarly, the proximity
between anti-gout medications (M05) and diuretics reflects a
clinically observed relationship, as the side effects of diuretics
include hypercalcemia and hyperuricemia, which in turn are
closely related to gout24. These examples highlight again the
importance of a deeper understanding of the precise interplay
between interactome perturbations. To disentangle whether two
proximal perturbations represent either a pathobiological pertur-
bation and a potential treatment, or a treatment and a potential
side effect, we must understand the directionality of their
interplay. In other words, whether the effects of one perturbation
are increased or decreased by a second perturbation, or whether
their combination leads to yet another, unexpected outcome.

Quantifying high-dimensional perturbation interactions. To
address these questions systematically, we first had to devise a
mathematical framework that can fully capture the diversity of
mutual interactions that may arise between perturbations with
complex responses. Existing methodologies focus on a single
readout only, most notably cellular toxicity25,26. While cell death
(or survival, respectively) represents the key outcome for many
applications, such as cancer treatment or antibiotics, complex
biological systems like cells or whole organisms clearly have a
much richer repertoire of responses to perturbations than being
dead or not. Considering only a single readout fundamentally
limits the modes of interactions that can be observed. Depending
on whether a response is more, less or equally pronounced as
expected, one can only define synergy, antagonism, or non-
interaction, respectively (Fig. 2a). Higher-dimensional readouts,
in contrast, allow for a much more detailed characterization of
perturbations and their interactions27,28. As we show below, high-
dimensional readouts can be used to extract not only the type of
an interaction but also its direction (Fig. 2b). In the following, we
will focus on readouts describing detailed morphological profiles
as extracted from our experimental system. However, our fra-
mework can be applied to arbitrary stimuli, for example, gene
knockouts, as well as other high-dimensional readouts, such as
gene expression profiles.

We start by characterizing a given cell shape by a set of
morphological features (Fig. 2c), which in turn represents a point
within the high-dimensional morphological space of all possible
shapes. A perturbation that changes the shape can then be identified
with a unique vector ~A that points from the unperturbed (DMSO
treated) to the perturbed (drug treated) state (Fig. 2d and Methods
section). Even for arbitrary high dimensionality of the full state
space, two perturbations ~A and ~B can always be embedded into a
two-dimensional plane S. By definition, perturbations that do not
interfere with each other are expected to result in a simple

superposition AB
�!

ind ¼ ~Aþ~B of the individual effects. Any
deviation between this expectation and an experimentally observed

cell state of two combined perturbations AB
�!

obs can be identified
with an interaction that occurred between them. Mathematically,
any combination vector can be uniquely decomposed into three
components (Supplementary Fig. 6): two components lie within S
and represent the contributions of the two individual perturbations,
potentially stretched or shortened, the third component points
outside of S, representing an entirely new, emergent phenotype.
This decomposition allows us to quantify precisely how the effect of

each individual perturbation has been increased or decreased by the
presence of the second perturbation, as well as whether their
combination led to an emergent effect that cannot be attributed to
either individual perturbation, but is purely a result of their
combination. Taken together, these components offer a complete
description of any potential outcome that may arise from
combining two perturbations in terms of exactly 18 possible classes
(Fig. 2e). The classes can be categorized into (i) two undirected
patterns with either no interaction at all or only emergent
interaction, (ii) eight uni-directional patterns where only one of
two perturbations is modulated and (iii) eight bi-directional
patterns where both perturbations affect each other.

A morphology-based perturbation interaction screen. We used
the human epithelial cell line MCF10-A and an experimental
setup established previously for quantifying morphological
changes upon drug treatment (Fig. 3a, Supplementary Data 6 and
Methods section). We collected fluorescent microscopy images of
cells treated with every individual compound in our library, as
well as all pairwise combinations. Using the CellProfiler soft-
ware29, we extracted a total of 438 morphological features (Sup-
plementary Data 7 and 8) for each treatment, representing both
intuitive geometric attributes (e.g., size, diameter), as well as more
abstract mathematical descriptions of cell shape (e.g., Zernike
polynomials). After filtering for the most robust, informative and
non-redundant features, we obtained a final set of 78 morpho-
logical features, which thus define a 78-dimensional morpholo-
gical space (Supplementary Data 9). The position of a specific
treatment within the morphological space is determined by
averaging the values of each feature across all cells of the
respective treatment (Fig. 3b and Methods section).

After quality control, 28 out of 242 compounds showed a
strong phenotype compared to untreated controls, a ratio
consistent with previous reports21 (Supplementary Fig. 7, Sup-
plementary Data 10 and Methods section). Note that for any
individual morphological feature, even strong perturbations
rarely result in a complete separation between the values observed
in the treated and untreated cell populations, respectively. We
therefore determine the strength of a given perturbation by
the significance of the shift of its feature distributions relative to
the respective distributions in the untreated cell population. We
further evaluated the morphological heterogeneity, finding that in
general, treated and untreated cells are characterized by similar
levels of morphological variability. Neither showed evidence for
the existence of significant subpopulations of cells with clearly
distinct phenotype. We conclude that the observed morphological
heterogeneity is largely driven by natural variation at the cellular
level, and not by population level factors, for example that a
particular drug only acted on a subset of cells (see Supplementary
Methods and Supplementary Fig. 8 for a detailed analysis of cell
population heterogeneity).

A principal component analysis (PCA) on the 78-dimensional
morphological space shows the rich repertoire of cell morphol-
ogies (Fig. 3c, d, see also Supplementary Methods and
Supplementary Fig. 9 for a comparison between visual similarity
and closeness within the morphological space). For example,
drugs targeting microtubules (e.g., vinblastine) resulted in small
round cells, while antimetabolite drugs (e.g., cytarabine) often
resulted in larger and branched cells. While some of the observed
phenotypes can be linked directly to the molecular action of the
respective drug, such as the tubulin inhibitors that disrupt the
cytoskeleton, thus resulting in small, round phenotypes, others
likely reflect more complex and integrated effects in several
cellular components. Drug combinations further expand and fill
this morphological space (Fig. 3c). The observed morphologies
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are highly robust, showing an average cosine similarity Scos= 0.59
between replicates compared to Scos= 0.15 between different
drugs (Fig. 3e, Supplementary Fig. 10B). Our experiments further
confirmed previous studies19,30 showing that morphological
similarities can be related to similar MOAs (Scos= 0.35 versus
Scos= 0.15) and, to a lesser extent, even to a common therapeutic
class (Scos= 0.28 versus Scos= 0.13, Fig. 3e, Supplementary
Fig. 10C, D).

Importantly, our analyses revealed a novel, direct link between
drug similarities on the cell morphology level, and the
interactome-based distance of their respective targets: as the
network distance between targets increases, the morphological
similarity gradually decreases from Scos= 0.40 to Scos= 0.07, i.e.
by a total factor of 5.7, indicating that perturbations of specific
interactome areas are related to specific morphologies (Fig. 3f,
Supplementary Fig. 10E, F).

The perturbome interaction network. We next extracted inter-
action profiles between the compounds using the vector-based
methodology introduced above (see Methods section for details).
In total, we identified 1832 interactions between 242 drugs that
can be integrated into a single connected perturbome network
(Fig. 4a). Given a total of 35,909 potential interactions, the
observed connectivity of only 5% is remarkably sparse. Negative
links are most frequent (44% of all edges), followed by emergent
(31%) and positive (24%) links. The distribution over the 18
possible pairwise patterns shows a strong underrepresentation of
reciprocal patterns (only 5% of all interactions), with mutual
negative interaction being the most abundant of them (Fig. 4b).
The identified perturbome thus indicates that in the vast majority
of cases, two perturbations do not interfere with each other. In
the relatively rare cases where they do, most commonly only one
perturbation modulates the effect of the other.
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mechanism of action (MOA) and drugs of the same therapeutic ATC class (*** denotes P value < 0.001, Mann–Whitney U test). f Morphological similarity
versus interactome distance of the respective drug targets. The closer the targets of two drugs are on the interactome, the more similar are the
morphological changes they induce in our cell line. Bars in e, f indicate the mean over all measurements; error bars show the 95% confidence interval
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The perturbome can be partitioned into a small core of
densely connected nodes and a loosely interconnected periph-
ery containing the majority of all nodes (Fig. 4c–f and Methods
section)31. The core consists exclusively of strong perturba-
tions, which are connected mainly by negative links (67%). This
can be understood as a consequence of finite cell plasticity:
physical constraints in attainable cell shape may prevent very

strong morphological changes to be combined in a simple
superposition, thus resulting in the observed negative interac-
tions. Within the perturbome periphery, 85% of all interactions
are emergent. This was also expected, as most of the respective
perturbations (99%) show little morphological effects by
themselves, hence any significant pairwise phenotype must be
interpreted as emergent. Finally, the majority of all interactions
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in the perturbome are found between the core and the
periphery, consisting of 46% negative, 29% positive, and 25%
emergent links. Most interactions (75%) are directed from the
periphery towards the core, thus representing the modulation
of a dominant perturbation by a weaker one. This also explains
the finding that hubs are observed only for incoming, but not
for outgoing links (Fig. 4g).

We tested the robustness of the identified perturbome
connectivity patterns by comparing it to randomized networks
constructed using randomly swapped compound labels (see
Fig. 4h and Methods section). The actual perturbome contains
significantly fewer negative and emergent interactions (z-score=
−57 and z-score=−46, respectively) and significantly more
positive interactions (z-score= 29) than expected by chance. The
higher number of negative interactions in random networks can
be explained by random pairs where the two single perturbations
contain morphological changes that are not present in the
randomly chosen combination. Similarly, the higher number of
emergent interactions results from morphological changes in the
combination perturbation that are not present in the single
perturbations. Since positive interactions can only occur when
specific morphological changes of a single perturbation are
amplified in the combination, they are less likely to occur by
chance, thus resulting in the lower number observed in
random networks. Taken together, these random controls
confirm that the observed patterns cannot be attributed to
general variability in cellular morphology, but are specific to
particular perturbation pairs.

Linking cellular, molecular, and pathophysiological features.
We next investigated whether the interaction patterns observed
on the cellular level can be associated with the molecular or
pathophysiological levels (Supplementary Data 11). We collected
a comprehensive set of 29 drug annotations (Supplementary
Data 12 and Methods section), ranging from molecular infor-
mation of the compounds (e.g., associated pathways, transporters,
and metabolizing enzymes) to pathophysiological information
(disease indications and known side effects). None of the indi-
vidual annotations correlated strongly with the tendency of drugs
to interact with others (Fig. 5a and Method section). In combi-
nation, however, they were predictive: we trained a random forest
classifier to predict the observed drug–drug interactions based on
a total of 67 drug pair features that were compiled from the 29
drug annotations introduced above and quantify the extent to
which specific features are shared between two drugs (Supple-
mentary Data 13 and Methods section). For the general presence
of any drug interaction, the classifier reached an area under the
Receiver Operating Characteristic (ROC) of AUROC= 0.74 ±
0.04 (mean ± 95% confidence interval, 10-fold cross validation,
Fig. 5b). Interestingly, the performance differed significantly
between interaction types: negative interactions are the most
predictable (AUROC= 0.81 ± 0.2), emergent interactions the
least (AUROC= 0.64 ± 0.02). Inspecting the contribution of

different feature classes, we found that the interactome char-
acteristics of the respective drug targets have by far the highest
predictive power (Fig. 5c). All three interaction types are asso-
ciated with interactome perturbations that are significantly closer
than random expectation, yet we also observed clear differences
among them: perturbations in very close interactome proximity
to each other tend to result in negative interactions. Intermediate
distances tend to result in positive interactions and, finally,
emergence is associated with relatively distant interactome per-
turbations (Fig. 5d, e).

To further elucidate this finding, we next explored other
significant relationships between the perturbome and molecular
or pathophysiological drug characteristics. Figure 5f summarizes
whether a given characteristic has a significant link to any
interaction type (colored triangles) and whether it is enriched or
depleted among interacting perturbations compared to non-
interacting ones (triangle up/down). This analysis offers new
insights, but also recapitulates several well-understood mechan-
isms of drug interactions. For example, chemically similar
compounds may compete for the same target, thus altering the
combined response relative to completely independent actions32

(Fig. 5f, column 1). The increased number of interactions among
drugs with common transporters33 or metabolizing enzymes34

(Fig. 5f, columns 2 and 3) may be understood similarly: for
example, a transporter (enzyme) that imports (metabolizes) a
given drug under normal conditions may become unavailable
when a second drug interferes with it. This would decrease the
effective concentration of the former drug compared to the single
perturbation, thus resulting in a negative interaction. Similar
cases can be made for emergent or activating interactions. We
further observed significantly increased functional similarity
among the targets of interacting drugs in terms of shared
pathways, GO annotations and transcriptional profiles (Fig. 5f,
columns 5, 7–9). This is consistent with results obtained for
genetic interactions in yeast35. We also find interesting enrich-
ment patterns on the pathophysiological level: interacting drugs
frequently share known side effects (Fig. 5f, column 10). The
striking similarity with the enrichment patterns for common
transporters and enzymes (compare Fig. 5f, columns 10 and 2 and
3, respectively) could suggest a direct link between side effect and
a particular transporter/enzyme36. In contrast, only positive
interactions are significantly enriched with drug interactions
reported in the DrugBank database37 (Fig. 5f, column 11). In part,
this may reflect the high number of reports describing an effective
overdose of a particular drug when combined with another (70%
of all interaction reports in DrugBank, see Supplementary
Methods for an overview of the database). Finally, we find that
our perturbation interactions are enriched for annotations to
similar diseases (Fig. 5f, column 12). This follows from a
combination of two interactome properties of drug-induced
perturbations: first, drug perturbation modules typically overlap
with the module of the respective disease they are used to
treat15,22. Second, the drug interactions identified in our screen

Fig. 4 The perturbome drug perturbation network. a The perturbome combines all 1832 identified interactions between 242 chemical compounds into a
single network. Compounds resulting in strong morphological changes are colored in orange. Negative interactions are most frequent (red, 44%), followed
by emergent (blue, 31%) and positive interactions (green, 21%). b Number of times that each of the 12 pairwise interaction types were observed. Most
interactions are uni-directional, and bi-directional cross-talk is rare. c The degree-ordered adjacency matrix uncovers a pronounced core–periphery
structure within the perturbome network. d The core consists mainly of negative interactions between drugs with strong morphotypes. e The majority of all
observed interactions occur between the core and the periphery, often representing the modulation of a drug with a strong effect by a drug with a weak
effect. f Interactions among drugs in the periphery are mainly emergent. g The degree distributions show the frequency of the number of neighbors per
compound. There is a marked difference between the number of incoming and outgoing interactions. h Comparison of the number of observed interactions
with randomized networks obtained from drug label randomization. Negative (positive) z-scores indicate that the observed number is smaller (larger) than
expected by chance
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are strongly associated with an overlap of their respective
perturbation modules.

Figure 5g condenses the commonalities and differences among
the three interaction types in terms of molecular and pathophy-
siological fingerprints. For example, positive interactions are
more strongly associated with chemical similarity than the other

interaction types, whereas negative interactions have a unique
peak for shared pathways, while emergent interactions are
characterized by a distinctive spread on the interactome (Fig. 5g,
green, red, and blue curves, respectively). Taken together, these
discriminatory features provide a rich resource for further
dissecting the different drug–drug interaction types.
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Discussion
The present study provides a mathematically founded strategy for
investigating the combined effect of multiple perturbations with
high-dimensional readouts. We showed that detailed cell-shape
features can be used to quantify whether different drug pertur-
bations either remain independent, influence each other in a
directed positive or negative fashion, or result in the emergence of
entirely unexpected phenotypic outcomes. Our analyses revealed
distinctive molecular and pathophysiological fingerprints of the
different interaction types. Most prominently, we found that the
interactome-based distance between the targets of two perturba-
tions determines their interaction: interacting perturbations tend
to be co-localized in a common interactome neighborhood,
whereas perturbations of distinct parts of the interactome tend to
act independently. For perturbations within the same interactome
neighborhood, the interaction type is determined by their
proximity: close interactome proximity is associated with a
decreasing effect, medium interactome distances with increasing
effects, whereas entirely unexpected phenotypic outcomes emerge
at the boundaries of the respective perturbation neighborhoods.

These findings complement previous studies showing that
diseases whose associated genes reside in overlapping interactome
neighborhoods are characterized by increased clinical similarity
and comorbidity compared to diseases affecting separate inter-
actome neighborhoods13. Taken together, this suggests a gen-
eralized view according to which both therapeutic and disease
associated perturbations can be understood as localized inter-
actome perturbations whose interactions are determined by their
interactome overlap. The striking ability of the interactome to
isolate the impact of separate perturbations despite the highly
connected nature of the underlying molecular network is also
reflected in the overall sparseness of the perturbome identified in
this study.

The methodologies introduced here can also be applied to
other types of high-dimensional readouts, such as transcriptional
profiling, or other types of perturbations, for example in genetic
interaction studies25,38 or studies of dosage dependent drug
effects (see Supplementary Methods, Supplementary Data 14 and
Supplementary Fig. 11 for a basic proof-of-concept application of
morphological effects across drug concentrations). Targeted
perturbation has long been the prime tool for elucidating the
function of individual components of a biological system. More
recently, also pairwise perturbations have been investigated at an
increasing scale in both healthy and disease conditions39,40. To
facilitate the application of our methodology to these or other
studies, the computational pipelines used in this work are avail-
able within the Supplementary Material. We further provide the
raw imaging data, as well as the extracted perturbome network as
a resource for more advanced analyses, for example to investigate

connection patterns involving multiple link types and more than
two perturbations using graphlet approaches41.

Methods
Interactome construction. For the construction of the human interactome, we
used the Human Integrated Protein Protein Interaction Reference (HIPPIE) data-
base (version 2.1, see Supplementary Methods for more details of the database)42,43,
which contains 322,599 confidence scored and functionally annotated interactions
between 17,053 human proteins and lncRNAs. Filtering for proteins and interac-
tions with at least one literature reference results in a PPI network with 16,393
nodes and 309,365 links (Supplementary Data 1). We restrict our analysis to the
largest connected component containing 16,376 nodes and 309,355 links. The
interactome is approximately scale-free and shows other typical characteristics
observed previously in many biological networks44, such as high clustering and
short path lengths (Supplementary Fig. 1).

Drug library and target annotation. We used the previously established CeMM
library of unique drugs (CLOUD) that was designed to capture as much as possible
of the chemical and biological diversity of all US Food and Drug Administration
(FDA) approved drugs26 (see Supplementary Fig. 2 and Supplementary Methods
for a characterization of the CLOUD library). The library consists of 314 drugs, of
which 267 have been used in this study (Supplementary Data 2). We extracted
targets for all drugs from three databases: (i) DrugBank45, (ii) PubChem46, and (iii)
ChEMBL47 (see Supplementary Data 3 for the various identifiers). For DrugBank,
we manually downloaded the complete dataset from [https://www.drugbank.ca/
releases/latest, Sept. 2018] and then parsed the xml file using a custom Python
script. As targets, we included all gene associations from various DrugBank sec-
tions, namely targets, transporter, enzymes, and carriers. For PubChem and
ChEMBL, we used the REST-based API (application programming interface) to
download drug information. The PubChem database contains a direct qualifier for
active targets. For ChEMBL, we included experiments with IC50, Ki, or EC50 and
used a typical 10 μM cutoff. We then used DrugBank to filter out annotations that
represent enzymes and transporters instead of direct targets, e.g., the CYP genes,
resulting in the “Target filtered” list that we used for our analysis (compare with
Fig. 1b, red circles, and Supplementary Fig. 3 and Data 5).

Interactome characterization of the drug targets. We characterize drug targets
on the interactome using several network-based measures summarized in Sup-
plementary Fig. 4: (i) The degree k of an individual protein, giving the number of
its neighbors within the interactome. (ii) The centrality c, quantifying the fraction
of all pairwise shortest paths that pass through a node. (iii) The size S of the largest
connected subgraph formed by a given set of nodes. (iv) The average shortest
distance 〈ds〉: for each of the Nd target proteins, we determine the distance ds to the
next-closest protein associated with the same drug. The average 〈ds〉 can be
interpreted as the diameter of a perturbation module on the interactome. We
compared this average to mean distance μrandom (with respective standard deviation
σrandom) obtained from 10k random modules of the same size and quantified the
localization of the original protein set using Glass Δ as effect size:

Δ ¼ dsh i � μrandom
σrandom

: ð1Þ

(v) The network-based overlap sAB between two drugs A and B is measured by
comparing the diameters 〈dAA〉 and 〈dBB〉 of the respective modules of the indi-
vidual drug targets to the mean shortest distance 〈dAB〉 between them:

sAB ¼ hdABi � ðhdAAi þ hdBBiÞ=2: ð2Þ
Positive values of sAB indicate that the two drug modules are separated on the
interactome, whereas negative values correspond to overlapping modules13. (vi)

Fig. 5 Linking cellular perturbation interactions with molecular and pathophysiological drug characteristics. a Individual drug characteristics do not correlate
with the number of drug interactions. b Performance of a random forest machine learning classifier for predicting drug interactions from pairwise drug
characteristics. c Relative importance of different feature classes for the predictions in b. d Distribution of interactome distances between the targets of two
drugs that do not interact (gray) show any interaction (orange) and a positive (green), negative (red), or emergent (blue) interaction. The bootstrapping
analyses confirms the significant differences among the respective means. The middle line in the boxplot displays the median, the box indicates the first
and third quartile, whiskers the 1.5 interquartile range (IQR) (** and *** denote P values <0.01 and <0.001, Mann–Whitney U test). Outlier values are not
displayed. e Interactome relationship between interacting perturbations: interacting drugs are generally characterized by overlapping modules. The extent
of the overlap is predictive for the interaction type, from small overlap indicating emergent interactions to moderate and strong overlap indicating positive
and negative interactions, respectively. f Summary of the relationships between the interactions observed on the cellular level and molecular or
pathophysiological drug characteristics. Significant relationships with an interaction type are indicated by colored triangles that point up/down for
enrichment/depletion compared to non-interacting drugs. g Interaction fingerprints highlighting how a given interaction type differs in its specific
molecular and pathophysiological characteristics compared to the other interaction types. Numbers refer to the characteristics listed in f. Differences are
quantified using Cohen’s D, dC, as a measure of effect size. The black central represents no difference (dC= 0) in the respective interaction type relative to
all interactions; gray lines indicate changes in increments of one unit of dC
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The mean distance 〈dMeanAB〉 of all pairs of targets between the two drugs, which
can be interpreted as a proximity measure between the two respective drug
modules44.

Quantifying biological similarity of proteins. We quantified the biological
similarity of proteins according to their annotated (i) GO terms (ii) disease and (iii)
side effect (SE) associations. GO annotations48 were extracted from [http://www.
geneontology.org/, downloaded Aug. 2018]. We removed annotations associated
with the evidence codes IEA (inferred from electronic annotation), ND (no bio-
logical data available), and IPI (inferred from physical interaction) in order to
avoid circularity in the interactome-based evaluation of the similarity of proteins.
The filtering reduces the number of annotations by 38% (from 476k to 296k
annotations).

To construct a comprehensive set of gene-disease annotations, we combined
information from the disease ontology extracted from [http://disease-ontology.org/,
downloaded April 2018] with gene–disease associations from [http://www.disgenet.
org/, downloaded November 2018]. We included only the following sources (in
decreasing order of the respective number of contained diseases): HPO49, CTD50,
PSYGENET51, ORPHANET52, UNIPROT53, resulting in 130k gene–disease
associations. Disease annotations were mapped between the two databases using
the Unified Medical Language System (UMLS)54 obtained from [http://www.
disgenet.org/web/DisGeNET/menu/downloads, November 2018]. In total, we
could map approximately 69% of all annotations (ca. 90k out of 130k), resulting in
7795 genes linked to 3630 diseases (Supplementary Data 15).

Side effects were extracted from the Offsides database55 [http://tatonettilab.org/
resources/tatonetti-stm.html, April 2018]. In total, we identified 7685 unique side
effects annotated to a CLOUD drug, on average, each drug was annotated to
269 side effects. Anatomical Therapeutic Chemical Classification System (ATC)
classes for the individual drugs were extracted from DrugBank [https://www.
drugbank.ca, downloaded April, 2018].

For the GO and disease ontology we used a similarity metric based on the
information content of the individual terms within the respective ontology trees:
functional similarity between drug protein targets is quantified by the specificity of
their shared annotations, assuming that proteins sharing very specific functions are
more similar to each other than those who only share generic annotations8. The
specificity of a term i is measured by the total number of proteins ni annotated to it.
The similarity S(a, b) of two proteins a and b is then determined by the most
specific term they share:

Sða; bÞ � 2
minðniÞ

ð3Þ

The value of S(a, b) ranges from S(a, b) ≡ 0 for no shared terms, to S(a, b)= 1 if a
and b are the only two proteins annotated to a specific GO term. The overall
functional similarity of a set of proteins associated with a particular drug is
measured by the average S(a, b) over all npairs pairs of drug-associated proteins:

Sh i ¼ 1
npairs

X
Sða; bÞ: ð4Þ

Since the side effects extracted from the Offsides database are not ontology based,
we use the amount of overlapping side effects to quantify similarity.

Identification of interactions between perturbation. To calculate effect and
directionality of the interactions between two perturbations we treat both the single
perturbations, as well as the double perturbation as vectors pointing from the
unperturbed state to the perturbed one within an n-dimensional feature space.
Here, we use morphological features that describe the shape of cells to define the
feature space (Supplementary Fig. 6A–C). Note, however, that our framework is
applicable to any high-dimensional readout. We used the following steps to define
and calculate interactions: the distance between two points ~x and~y with coordi-
nates~x ¼ ðx1; x2; :::; xnÞ and~y ¼ ðy1; y2; :::; ynÞ in an n-dimensional space is given
by

d2 ¼
Xn
i¼0

ðxi � yiÞ2: ð5Þ

In our case, we have the two single treatments A and B, as well as the combination
treatment C, whose corresponding vectors we denote as ~a, ~b, and~c, respectively.
The vectors~a and~b span a two-dimensional surface S that also contains the origin:

S :~x ¼ r~aþ s~b: ð6Þ
The distance of the point~c from this surface thus reads

d2ðr; sÞ ¼
Xn
i¼0

ðrai þ sbi � ciÞ2: ð7Þ

Minimizing the distance yields a vector pointing perpendicular from the surface to
the point~c: Setting the partial derivatives of the distance with respect to r and s to
zero results in the matrix equation

A~p ¼~h; ð8Þ

where the matrix A is given by A ¼ a2 ~a:~b
~a:~b b2

� �
, and with the vectors~p ¼ r

s and

~h ¼ ~a:~c
~b:~c

� �
.

The parameters r and s can be calculated by inverting the matrix A via

~p ¼ A�1~h: ð9Þ
Inserting the resulting r and s in the surface Eq. (6) gives the projection point from
~c onto the surface S. The orthogonal vector then reads ~n ¼~xr;s �~p and holds

~n �~a ¼ 0 and ~n �~b ¼ 0 . Plugging r and s into Eq. (7) finally yields the minimal
distance. We can now decompose every possible combination vector~c into two
components within the 2D surface S and a third component pointing outward:

~c ¼ α~aþ β~bþ γ~n: ð10Þ
Non-interaction between two perturbations can be identified with a combination
vector that represents exactly the superposition of the two single ones, i.e., α ¼
β ¼ 1 and γ ¼ 0: Any deviation from this superposition hence indicates an
interaction between perturbations. The different permutation of α and β being
equal to/smaller/larger than one, as well as γ being zero or not, divide the whole
state space into a total of 27 subspaces (1 point, 6 1D lines, 12 2D surfaces, and 8
3D spaces), such that any combination vector can be assigned to exactly one of
them (Supplementary Fig. 6D). As both positive and negative values of γ map to
the same emergent interaction type, there are only 18 subspaces that correspond to
different interaction types and which are depicted in Fig. 1e and Supplementary
Fig. 6E. Note that in principle, the absolute values of α, β, and γ could be used to
quantify the magnitude of an interaction. In this work, however, we considered an
unweighted network in order to investigate the basic qualitative properties of the
different interaction types. To this end, we applied very stringent statistical criteria
for the presence or absence of an interaction, see below for a detailed discussion of
the construction of the perturbome.

High-throughput high-content imaging screen. We used MCF-10A (Michigan
Cancer Foundation-10A) cells for our screen, an adherent, non-tumorigenic breast
epithelial cell line that exhibits a rich morphology and has been used previously in
high-content imaging screens18,56. MCF-10A cells arose without exposure to
chemical or viral carcinogens, exhibit only minimal changes to the genome, do not
show any characteristics of invasiveness, and also do not form tumors when
transplanted into immunodeficient mice57,58. Drugs were transferred on 384-well
plates using an acoustic liquid handler capable of transferring smallest amounts of
liquids (2.5 nL). The cells were then seeded on top of the drugs using an automatic
cell dispenser and incubated at 37 °C for 72 h and 5% CO2 in DMEM-F12 cell
media (Supplementary Data 6). For fluorescence staining, the medium was
removed and living cells were first stained for mitochondria using MitoTracker
Orange (1 µM in 1× PBS, 30 min at 37 °C). Next, the cells were 3× washed with PBS
and fixed with cold methanol at −20 °C overnight. Methanol was removed and 3%
BSA and 0.1% Triton-X in PBS were added for permeabilization/blocking (2 h at
room temperature, RT). The blocking solution was removed and the cells were
incubated with the first antibody (anti-Tubulin, 1:500 in 3% BSA, 0.1% Triton-X in
PBS) overnight at 4 °C in the cold room. The following day, the Alexa Fluor
488 secondary antibody (1:1000) for visualizing the cytoskeleton and 4′,6-diami-
din-2-phenylindol/DAPI (1:500) for staining the DNA in 3% BSA, 0.1% Triton-X
in PBS were added (2 h at RT). In a final step, cells were washed 3× with PBS. Four
images (foci) (20×) (see Supplementary Fig. 12 for example images) per well were
acquired in a high-throughput manner using the Operetta High-Content Imaging
System (PerkinElmer) in three fluorescent channels, DAPI (405/470 nm), Beta-
Tubulin (488/525 nm), and MitoTracker (554/576 nm). The whole screen was
performed in two batches.

Image analysis and feature extraction. We used the software CellProfiler (ver-
sion 3.0.0)29,59 to process the images from the screen, see Supplementary Fig. 13 for
an overview of our feature extraction pipeline, which is also provided as Supple-
mentary Data 7. Some parameters of the pipeline were adjusted between the two
batches of the screen, e.g., minimum intensity thresholds for segmentation to
account for slight differences, such as different exposure times. The pipeline first
corrected the image channels for uneven illumination before performing image
segmentation and feature measurements. We next applied an image quality
workflow to exclude images that are, e.g., out of focus or have problems with
saturation. The quality control workflow used 45 quality image measurements
provided by CellProfiler (Supplementary Data 8), in combination with an isolation
forest method to detect outliers as implemented in the Python package Scikit-learn
(v0.2.1)60. Isolation forest is an ensemble method based on decision trees. Since
outliers are less frequent than regular observations, they can be detected by being
closer to the root of decision trees, i.e., they require less splits to be uniquely
characterized. We identified around 3% of all images (ca. 6000) as outliers. For our
subsequent analysis, we included only wells with at least three out of four valid
images.

In total, we calculated 438 cell morphology features, which include descriptors
of geometry, intensity distributions, texture, as well as adjacency statistics measured
for the cell, nuclei, and cytoplasm (Supplementary Data 8). The features were
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normalized as follows: we first calculated the median of the cellular features over all
cells in a given well. It has been shown previously that small-molecule effects are
well characterized by the shift of measures-of-centers (mean or median) of their
phenotypic response30,61. Next, we performed a Tukey’s median polish to reduce
the impact of plate effects, such as evaporation towards the borders of a plate. This
procedure fits an additive model for data in a two-way layout table of the form row
effect+ column effect+ overall median62. Finally, we scale all values to the range
between 0 and 1, considering values outside the 99.5/0.05 percentiles as outliers.

Feature filtering. To include only robust and informative features, we applied the
following filtering pipeline: (i) For each feature, we calculate the coefficient of
variation (CV) among the DMSO controls of the same plate. The coefficient of
variation is a stable measure for the variation among samples normalized by their
mean. The CV is calculated both within replicates on the same plate (intra-plate
CV), as well as between plates (inter-plate CV). Only features whose inter- and
intra-plate CV are smaller than 0.2 were included in the further analysis. (ii) We
removed features that show too little correlation between drug treatment replicates
(cutoff: Pearson’s ρ < 0.2). (iii) We evaluated the effect size of each feature z-scores,
and removed all features without significant effect in any single or combinatorial
perturbation by transforming the z-scores to P values and applying a cutoff of
P value <0.05 after Bonferroni correction for multiple hypotheses. (iv) Finally, we
removed redundant features: we first calculated all pairwise feature correlations.
For any feature pair with a correlation of ρ > 0.8 we then removed the one with the
smaller effect size using an iterative minimal cut approach (Supplementary Fig. 14).
This step further ensures approximate orthogonality for the vector-based frame-
work introduced above. Steps (i) through (iii) are applied separately to the two
batches. At step (iv), all features that fulfilled all requirements for both batches
before removing correlating features were included. In total, 78 out of 438 (17.8%)
features were included for the subsequent analyses (Supplementary Data 9).

Identification of significant perturbations. We first filtered the drug perturba-
tions for various aspects: (i) We removed all wells with technical issues during the
drug transfer, e.g., compound precipitation. (ii) We excluded wells with less than
30 cells (Supplementary Fig. 7A). (iii) All single drug perturbations with less than
three valid wells (replicates) were excluded. (iv) We tested the stability of each
drug, i.e., whether its activity decreased over the course of the whole screen, by
comparing the six individual replicates that were plated at different time points
from the same source plate. Drugs that lose activity over time should exhibit a
lower cytotoxicity at the later replicates. We defined stability using a linear
regression over the individual time points:

f ðxÞ ¼ aþ bx: ð11Þ
Drugs with b > 0.05 and a difference of at least 30% between the well with the

largest cell count and lowest cell count were excluded from the further analysis
(Supplementary Fig. 7B). Out of the initial 267 drug perturbations, 242 fulfilled all
criteria and were further used in our morphological analysis and perturbation
interaction calculations (Supplementary Data 10). To distinguish significant
perturbations from random fluctuations, we used the Mahalanobis distance to
quantify the extent of morphological changes induced by a given perturbation. The
perturbation Mahalanobis distance DP can be understood as a multi-dimensional
generalization of the z-score and measures by how many standard deviations a
vector ~x differs from a distribution D with mean ~u and covariance matrix S:

DPð~xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~x �~uÞTS�1ð~x �~uÞ

q
: ð12Þ

To reduce noise, we applied a PCA to the original feature space before
calculating the Mahalanobis distances27, such that the considered principal
components collectively explain 90% of all variance. We used a cutoff of DP > 7 to
distinguish significant perturbations from non-significant. Overall, 28 out of 242
drug perturbations (12%) met this criterion in at least one of the two batches
(Supplementary Fig. 7C, D) and were considered as strong perturbations in the
subsequent analyses (compare with Figs. 3c and 4). For the single drug
perturbations we calculated the mean vector for the corresponding replicates and
compared it to the DMSO vectors across the whole batch. For the combination
perturbations, we used the single measurement and compared it to the DMSO
vectors across the whole batch.

Quantifying similarity between feature vectors. We used the cosine similarity
Scos that quantifies the similarity between two vectors ~A and~B in an n-dimensional
space via the angel θ between them:

Scos ¼ cosðθÞ ¼
~A �~B

jjAjj jjBjj ¼
Pn

i¼1 AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 A

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 B

2
i

p : ð13Þ

The resulting similarity values range from Scos=−1 for vectors pointing in
opposite directions, to Scos= 1 for vectors with the same orientation, with Scos= 0
indicating orthogonality and values in-between indicating intermediate (dis)simi-
larity. Note that the cosine similarity only considers the orientation of two vectors,
so that different magnitudes of the same phenotype are considered the same using
this measure. We thus included an additional filter for small non-significant per-
turbations that are merely random effects. Using a vector length at least two

standard deviations away from the mean vector norm of all DMSO wells (Sup-
plementary Fig. 10A) we assessed the similarity of cells treated with (i) the exact
same drug (but different replicates), (ii) drugs with the same MOA, (iii) drugs with
same ATC code, and (iv) drugs with similar interactome distance (Supplementary
Fig. 10 and Data 4).

Constructing the drug perturbation interaction network. We assessed the sig-
nificance of an interaction using the distance of the measured combination vector
from the non-interaction point defined by the sum of the individual vectors. To
incorporate the variability of the individual drug perturbations, we calculated all
possible pairwise vector sums for all corresponding single drug replicates (Sup-
plementary Fig. 15A). Next, we included the intra-plate variance, i.e., how much
cells fluctuate between wells on a plate, by multiplying each calculated vector sum
with the corresponding DMSO controls of the same plate as the combination
perturbation (Supplementary Fig. 15B). The resulting point cloud reflects the high-
dimensional space in which the combination vector is expected to fall for non-
interacting perturbations. By calculating the Mahalanobis distance between the
measured combination vector and this non-interaction space we can calculate how
likely the combination effect arose from a true effect that cannot be explained by
random fluctuations (Supplementary Fig. 15C). We considered combinations with
an interaction Mahalanobis distance DI > 3 as indicative of a true interaction. In
addition to the significance, we also included a measure of effect size. We calculated
drug specific thresholds using the distributions of α, β, and γ values for interactions
that are not significant, i.e., that have DI ≤ 3. For α, β, we set the effect size
threshold to be at least 2 median absolute deviations (MAD) away from the
respective medians of all non-significant drug pairs (Supplementary Fig. 15D). For
γ, we used the largest γ found among non-significant pairs as threshold (Supple-
mentary Fig. 15E). This is to prevent cases, where already small deviations in the
combination might be of nominal significance due to single drug perturbations
with only small effects, and hence also small variances, that may result in mis-
leadingly large Mahalanobis distances.

Characterization of the perturbome network. To assess the core-periphery
structure within the perturbome network we used the Python package cpalgorithm
(version 0.0.14)63. The package contains an implementation of the MINRES
(minimal residual) algorithm64, which assigns each node in the perturbome to
either the core or the periphery based on a singular value decomposition (SVD) of
the adjacency matrix of the network. The statistical significance of the resulting
assignment was tested using the (q,s)-test65, which calculates a P value based on a
comparison of the core–periphery structure within the perturbome to the
core–periphery structure of 1000 randomized networks created using the
configuration model.

To calculate the sparseness of the perturbome, we first determined the total
number of possible edges: the network consists of two node types, representing
drugs with strong (s) or weak (w) phenotype, as well as directed (positive/negative)
and undirected (emergent) edges. Only a single emergent interaction is possible
between two drugs with weak phenotypes, two interactions are possible between
one drug with weak and one with a strong phenotype, and three interactions
between two drugs with a strong phenotype. Therefore, the total number Mmax of
possible interactions can be calculated as

Mmax ¼
wðw� 1Þ

2
þ 2wsþ 3

sðs� 1Þ
2

ð14Þ

with s= 28 and w= 214, the possible number of links in the perturbome is given
byMmax= 35,909. We also applied this formula to calculate the number of possible
links within the core and the periphery, as well as between them. The sparseness is
finally determined by the ratio of observed and maximally possible number of links
(compare with Fig. 4a, d–f).

We assessed the robustness of the perturbome and the specificity of its edges by
comparing it to 10,000 randomized perturbomes of same size. Random
perturbomes were created by switching the labels of the individual drug
perturbation so that a combination vector is always compared to single vectors that
are not part of the combination. For example, a combination vector AB would be
compared to the two single vectors C and D. A single random perturbome then
results from testing the same number of interactions as in the original perturbome,
using the same parameters and thresholds as introduced above.

Linking interactions with drug characteristics. We used the data sources
described in the Supplementary Methods (Supplementary Data 12) to calculate the
following features for characterizing individual drugs and drug pairs: (i) Chemical
similarity as defined by the Tanimoto coefficient between two Molecular Access
System (MACCS) structural fingerprints. The MACCS fingerprints were created
using the SMILE strings (Simplified Molecular-Input Line-Entry System) of the
respective molecules. Conversion and calculations were performed using the
Python package RDKit [version 2018.09.01, https://www.rdkit.org/docs/
GettingStartedInPython.html]. (ii) Interactome distance was characterized using
the three measures 〈dAB〉, 〈dMeanAB〉 and 〈dMinAB〉 on all five drug target sets
introduced above (DrugBank, ChEMBL, PubChem, Combined, Target Filtered).
(iii) For features that quantify the overlap between two drugs, e.g., the number of
shared pathways or GO annotations, we used both the absolute number of
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common annotations, as well as a normalized version divided by the union of both
annotations. (iv) Features that quantify the biological similarity were calculated as
described in the respective section above. Overall, we calculated 29 features for
single drugs (Supplementary Data 12), and 67 features for drug pairs (Supple-
mentary Data 13).

To analyze whether any of the 29 collected drug characteristics correlates with
the general tendency of a drug to interact with others (compare with Fig. 5a), we
calculated the Pearson correlation coefficient for each drug feature F and the total
number of interactions per drug, i.e. its degree k. The 67 drug pair features were
analyzed using a random forest classifier from the Python package Scikit-learn
(v0.2.1)60 (parameters: max_depth= 25, estimators= 150, class_weight
= “balanced”, criterion= “gini”, max_features= “auto”). We calculated the area
under the receiver operator characteristic (AUROC) for each interaction type
(positive, negative, emergent) separately, as well as for all interaction types
combined, using a 10-fold cross validation procedure (Fig. 5b). We also calculated
the standard deviation for each point at the ROC curve. Random forest classifiers
allow for an inspection of the relative importance of the 67 individual features by
considering the number of times a feature was picked as a split among the decision
trees constructed by the classifier. We summarized the 67 features into 9 groups
based on their respective type and data source (Fig. 5c).

The bootstrapping procedure shown in Fig. 5d for quantifying the robustness of
the individual means and further characterizing the differences between the
different interaction types was performed as follows: we randomly sampled n
values from the original distribution (n= number of values in the distribution)
with replacement. This was performed 10,000 times and each time the mean was
calculated, resulting in a distribution of means.

The association between individual features and a given interaction type (see
Fig. 5f) was quantified using either using Fisher’s exact test (for binary features, i.e.
those that either overlap or not) or the Mann–Whitney U test (for all other
features). We calculated P values, as well as odds-ratios or fold-changes between
the individual groups (indicated as direction of the triangle in Fig. 5f). As cutoff for
significant features, we used a P value of ≤0.05 (indicated as colored triangles in
Fig. 5f). To quantify the differences among the interaction types, we calculated
Cohen’s d between each individual interaction type (positive, negative, and
emergent) compared to all interactions. Cohen’s d is defined as

d ¼ μ1 � μ2
s

ð15Þ
with the pooled standard deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þs21 þ ðn2 � 1Þs22

n1 þ n2 � 2

s
ð16Þ

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data used in this study is freely available as a supplement to this manuscript
(Supplementary Data). The raw imaging data produced and analyzed in this study were
deposited to the Image Data Resource (https://idr.openmicroscopy.org) under accession
number idr0069 (ref. 66). The perturbome network can be inspected interactively and
downloaded from the NDEx platform67 under https://tinyurl.com/y22ep2em

Code availability
Computer code is available from GitHub under https://github.com/menchelab/
Perturbome.
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